Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology

Transcriptome analysis enables the study of gene expression in human tissues and is a valuable tool to characterise liver function and gene expression dynamics during liver disease, as well as to identify prognostic markers or signatures, and to facilitate discovery of new therapeutic targets. In co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hepatology 2020-11, Vol.73 (5), p.1219-1230
Hauptverfasser: Saviano, Antonio, Henderson, Neil C., Baumert, Thomas F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1230
container_issue 5
container_start_page 1219
container_title Journal of hepatology
container_volume 73
creator Saviano, Antonio
Henderson, Neil C.
Baumert, Thomas F.
description Transcriptome analysis enables the study of gene expression in human tissues and is a valuable tool to characterise liver function and gene expression dynamics during liver disease, as well as to identify prognostic markers or signatures, and to facilitate discovery of new therapeutic targets. In contrast to whole tissue RNA sequencing analysis, single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics enables the study of transcriptional activity at the single cell or spatial level. ScRNA-seq has paved the way for the discovery of previously unknown cell types and subtypes in normal and diseased liver, facilitating the study of rare cells (such as liver progenitor cells) and the functional roles of non-parenchymal cells in chronic liver disease and cancer. By adding spatial information to scRNA-seq data, spatial transcriptomics has transformed our understanding of tissue functional organisation and cell-to-cell interactions in situ. These approaches have recently been applied to investigate liver regeneration, organisation and function of hepatocytes and non-parenchymal cells, and to profile the single cell landscape of chronic liver diseases and cancer. Herein, we review the principles and technologies behind scRNA-seq and spatial transcriptomic approaches, highlighting the recent discoveries and novel insights these methodologies have yielded in both liver physiology and disease biology.
doi_str_mv 10.1016/j.jhep.2020.06.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32534107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016882782030372X</els_id><sourcerecordid>2486865261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-86a36b790569ed2d17821fc815cb4a83766f3340dd247f88cc71ab3b317768d13</originalsourceid><addsrcrecordid>eNqNksuO0zAUhiMEYsrAC7BAltiAUIIvie0ghDQql0GqxAJYW47jtK5SO2M7RX0OXoBn4clwmlLBLBArH_t8_7HP8Z9ljxEsEET05bbYbvRQYIhhAWkBYXknWyAKYQ5pie5miwTxnGPGL7IHIWwhhATW5f3sguCKlAiyRfb9s7HrXudK9z1Ya-t2RgUgbQvCIKORPYhe2qC8GeIx9wq8NUG5vfYH4DpgU9SDozpEGfWsnfZjLz0wNmovVTTOhrQBvUlCMGwOwbjerQ9HujVBy6B__mjmw4fZvU72QT86rZfZ1_fvviyv89WnDx-XV6tcVZzEnFNJaMNqWNFat7hFjGPUKY4q1ZSSE0ZpR0gJ2xaXrONcKYZkQxqCGKO8ReQyezPXHcZmp1ulbeq1F4M3O-kPwkkj_s5YsxFrtxcMIYrxVOD5XGBzS3Z9tRLTGcQ1RoijPU7ss9Nl3t2MOkSxS3NMc5JWuzEIXCJcc0pwndCnt9CtG71No0gUp5xWmE6X45lS3oXgdXd-AYJi8ofYiskfYvKHgFQkfyTRkz9bPkt-GyIBL2bgm25cF5TRVukzlhxUsZrDmqXoOAD-__TSJIMkIyzdaGOSvp6lOv3w3mgvTvLWeK2iaJ35VyO_AChG7_Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486865261</pqid></control><display><type>article</type><title>Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Saviano, Antonio ; Henderson, Neil C. ; Baumert, Thomas F.</creator><creatorcontrib>Saviano, Antonio ; Henderson, Neil C. ; Baumert, Thomas F.</creatorcontrib><description>Transcriptome analysis enables the study of gene expression in human tissues and is a valuable tool to characterise liver function and gene expression dynamics during liver disease, as well as to identify prognostic markers or signatures, and to facilitate discovery of new therapeutic targets. In contrast to whole tissue RNA sequencing analysis, single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics enables the study of transcriptional activity at the single cell or spatial level. ScRNA-seq has paved the way for the discovery of previously unknown cell types and subtypes in normal and diseased liver, facilitating the study of rare cells (such as liver progenitor cells) and the functional roles of non-parenchymal cells in chronic liver disease and cancer. By adding spatial information to scRNA-seq data, spatial transcriptomics has transformed our understanding of tissue functional organisation and cell-to-cell interactions in situ. These approaches have recently been applied to investigate liver regeneration, organisation and function of hepatocytes and non-parenchymal cells, and to profile the single cell landscape of chronic liver diseases and cancer. Herein, we review the principles and technologies behind scRNA-seq and spatial transcriptomic approaches, highlighting the recent discoveries and novel insights these methodologies have yielded in both liver physiology and disease biology.</description><identifier>ISSN: 0168-8278</identifier><identifier>EISSN: 1600-0641</identifier><identifier>DOI: 10.1016/j.jhep.2020.06.004</identifier><identifier>PMID: 32534107</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Cell Communication - drug effects ; Cell Communication - physiology ; Cell interactions ; Cirrhosis ; Drug Discovery ; Fibrosis ; Gastroenterology &amp; Hepatology ; Gene expression ; Gene Expression Profiling - methods ; Hepatocellular carcinoma ; Hepatocytes ; Human health and pathology ; Humans ; Life Sciences ; Life Sciences &amp; Biomedicine ; Liver - pathology ; Liver - physiology ; Liver cancer ; Liver diseases ; Liver Diseases - diagnosis ; Liver Diseases - drug therapy ; Liver Diseases - genetics ; Liver Diseases - physiopathology ; Microenvironment ; Non-parenchymal cells ; Physiology ; Progenitor cells ; Ribonucleic acid ; RNA ; Science &amp; Technology ; Sequence analysis ; Sequence Analysis, RNA - methods ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Single-cell ; Single-Cell Analysis - methods ; Single-cell RNA sequencing ; Spatial transcriptomics ; Stem cells ; Therapeutic targets ; Transcription ; Transcriptomes ; Transcriptomics ; Zonation</subject><ispartof>Journal of hepatology, 2020-11, Vol.73 (5), p.1219-1230</ispartof><rights>2020 European Association for the Study of the Liver</rights><rights>Copyright © 2020 European Association for the Study of the Liver. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Nov 2020</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>156</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000579809700021</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c583t-86a36b790569ed2d17821fc815cb4a83766f3340dd247f88cc71ab3b317768d13</citedby><cites>FETCH-LOGICAL-c583t-86a36b790569ed2d17821fc815cb4a83766f3340dd247f88cc71ab3b317768d13</cites><orcidid>0000-0001-7585-472X ; 0000-0002-8864-2168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhep.2020.06.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,28255,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32534107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02921181$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Saviano, Antonio</creatorcontrib><creatorcontrib>Henderson, Neil C.</creatorcontrib><creatorcontrib>Baumert, Thomas F.</creatorcontrib><title>Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology</title><title>Journal of hepatology</title><addtitle>J HEPATOL</addtitle><addtitle>J Hepatol</addtitle><description>Transcriptome analysis enables the study of gene expression in human tissues and is a valuable tool to characterise liver function and gene expression dynamics during liver disease, as well as to identify prognostic markers or signatures, and to facilitate discovery of new therapeutic targets. In contrast to whole tissue RNA sequencing analysis, single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics enables the study of transcriptional activity at the single cell or spatial level. ScRNA-seq has paved the way for the discovery of previously unknown cell types and subtypes in normal and diseased liver, facilitating the study of rare cells (such as liver progenitor cells) and the functional roles of non-parenchymal cells in chronic liver disease and cancer. By adding spatial information to scRNA-seq data, spatial transcriptomics has transformed our understanding of tissue functional organisation and cell-to-cell interactions in situ. These approaches have recently been applied to investigate liver regeneration, organisation and function of hepatocytes and non-parenchymal cells, and to profile the single cell landscape of chronic liver diseases and cancer. Herein, we review the principles and technologies behind scRNA-seq and spatial transcriptomic approaches, highlighting the recent discoveries and novel insights these methodologies have yielded in both liver physiology and disease biology.</description><subject>Cell Communication - drug effects</subject><subject>Cell Communication - physiology</subject><subject>Cell interactions</subject><subject>Cirrhosis</subject><subject>Drug Discovery</subject><subject>Fibrosis</subject><subject>Gastroenterology &amp; Hepatology</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatocytes</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Liver - pathology</subject><subject>Liver - physiology</subject><subject>Liver cancer</subject><subject>Liver diseases</subject><subject>Liver Diseases - diagnosis</subject><subject>Liver Diseases - drug therapy</subject><subject>Liver Diseases - genetics</subject><subject>Liver Diseases - physiopathology</subject><subject>Microenvironment</subject><subject>Non-parenchymal cells</subject><subject>Physiology</subject><subject>Progenitor cells</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science &amp; Technology</subject><subject>Sequence analysis</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Single-cell</subject><subject>Single-Cell Analysis - methods</subject><subject>Single-cell RNA sequencing</subject><subject>Spatial transcriptomics</subject><subject>Stem cells</subject><subject>Therapeutic targets</subject><subject>Transcription</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><subject>Zonation</subject><issn>0168-8278</issn><issn>1600-0641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNksuO0zAUhiMEYsrAC7BAltiAUIIvie0ghDQql0GqxAJYW47jtK5SO2M7RX0OXoBn4clwmlLBLBArH_t8_7HP8Z9ljxEsEET05bbYbvRQYIhhAWkBYXknWyAKYQ5pie5miwTxnGPGL7IHIWwhhATW5f3sguCKlAiyRfb9s7HrXudK9z1Ya-t2RgUgbQvCIKORPYhe2qC8GeIx9wq8NUG5vfYH4DpgU9SDozpEGfWsnfZjLz0wNmovVTTOhrQBvUlCMGwOwbjerQ9HujVBy6B__mjmw4fZvU72QT86rZfZ1_fvviyv89WnDx-XV6tcVZzEnFNJaMNqWNFat7hFjGPUKY4q1ZSSE0ZpR0gJ2xaXrONcKYZkQxqCGKO8ReQyezPXHcZmp1ulbeq1F4M3O-kPwkkj_s5YsxFrtxcMIYrxVOD5XGBzS3Z9tRLTGcQ1RoijPU7ss9Nl3t2MOkSxS3NMc5JWuzEIXCJcc0pwndCnt9CtG71No0gUp5xWmE6X45lS3oXgdXd-AYJi8ofYiskfYvKHgFQkfyTRkz9bPkt-GyIBL2bgm25cF5TRVukzlhxUsZrDmqXoOAD-__TSJIMkIyzdaGOSvp6lOv3w3mgvTvLWeK2iaJ35VyO_AChG7_Y</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Saviano, Antonio</creator><creator>Henderson, Neil C.</creator><creator>Baumert, Thomas F.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7585-472X</orcidid><orcidid>https://orcid.org/0000-0002-8864-2168</orcidid></search><sort><creationdate>20201101</creationdate><title>Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology</title><author>Saviano, Antonio ; Henderson, Neil C. ; Baumert, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-86a36b790569ed2d17821fc815cb4a83766f3340dd247f88cc71ab3b317768d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell Communication - drug effects</topic><topic>Cell Communication - physiology</topic><topic>Cell interactions</topic><topic>Cirrhosis</topic><topic>Drug Discovery</topic><topic>Fibrosis</topic><topic>Gastroenterology &amp; Hepatology</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatocytes</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Liver - pathology</topic><topic>Liver - physiology</topic><topic>Liver cancer</topic><topic>Liver diseases</topic><topic>Liver Diseases - diagnosis</topic><topic>Liver Diseases - drug therapy</topic><topic>Liver Diseases - genetics</topic><topic>Liver Diseases - physiopathology</topic><topic>Microenvironment</topic><topic>Non-parenchymal cells</topic><topic>Physiology</topic><topic>Progenitor cells</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science &amp; Technology</topic><topic>Sequence analysis</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Single-cell</topic><topic>Single-Cell Analysis - methods</topic><topic>Single-cell RNA sequencing</topic><topic>Spatial transcriptomics</topic><topic>Stem cells</topic><topic>Therapeutic targets</topic><topic>Transcription</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><topic>Zonation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saviano, Antonio</creatorcontrib><creatorcontrib>Henderson, Neil C.</creatorcontrib><creatorcontrib>Baumert, Thomas F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of hepatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saviano, Antonio</au><au>Henderson, Neil C.</au><au>Baumert, Thomas F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology</atitle><jtitle>Journal of hepatology</jtitle><stitle>J HEPATOL</stitle><addtitle>J Hepatol</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>73</volume><issue>5</issue><spage>1219</spage><epage>1230</epage><pages>1219-1230</pages><issn>0168-8278</issn><eissn>1600-0641</eissn><abstract>Transcriptome analysis enables the study of gene expression in human tissues and is a valuable tool to characterise liver function and gene expression dynamics during liver disease, as well as to identify prognostic markers or signatures, and to facilitate discovery of new therapeutic targets. In contrast to whole tissue RNA sequencing analysis, single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics enables the study of transcriptional activity at the single cell or spatial level. ScRNA-seq has paved the way for the discovery of previously unknown cell types and subtypes in normal and diseased liver, facilitating the study of rare cells (such as liver progenitor cells) and the functional roles of non-parenchymal cells in chronic liver disease and cancer. By adding spatial information to scRNA-seq data, spatial transcriptomics has transformed our understanding of tissue functional organisation and cell-to-cell interactions in situ. These approaches have recently been applied to investigate liver regeneration, organisation and function of hepatocytes and non-parenchymal cells, and to profile the single cell landscape of chronic liver diseases and cancer. Herein, we review the principles and technologies behind scRNA-seq and spatial transcriptomic approaches, highlighting the recent discoveries and novel insights these methodologies have yielded in both liver physiology and disease biology.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><pmid>32534107</pmid><doi>10.1016/j.jhep.2020.06.004</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7585-472X</orcidid><orcidid>https://orcid.org/0000-0002-8864-2168</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-8278
ispartof Journal of hepatology, 2020-11, Vol.73 (5), p.1219-1230
issn 0168-8278
1600-0641
language eng
recordid cdi_pubmed_primary_32534107
source MEDLINE; ScienceDirect Journals (5 years ago - present); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Cell Communication - drug effects
Cell Communication - physiology
Cell interactions
Cirrhosis
Drug Discovery
Fibrosis
Gastroenterology & Hepatology
Gene expression
Gene Expression Profiling - methods
Hepatocellular carcinoma
Hepatocytes
Human health and pathology
Humans
Life Sciences
Life Sciences & Biomedicine
Liver - pathology
Liver - physiology
Liver cancer
Liver diseases
Liver Diseases - diagnosis
Liver Diseases - drug therapy
Liver Diseases - genetics
Liver Diseases - physiopathology
Microenvironment
Non-parenchymal cells
Physiology
Progenitor cells
Ribonucleic acid
RNA
Science & Technology
Sequence analysis
Sequence Analysis, RNA - methods
Signal Transduction - drug effects
Signal Transduction - physiology
Single-cell
Single-Cell Analysis - methods
Single-cell RNA sequencing
Spatial transcriptomics
Stem cells
Therapeutic targets
Transcription
Transcriptomes
Transcriptomics
Zonation
title Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20genomics%20and%20spatial%20transcriptomics:%20Discovery%20of%20novel%20cell%20states%20and%20cellular%20interactions%20in%20liver%20physiology%20and%20disease%C2%A0biology&rft.jtitle=Journal%20of%20hepatology&rft.au=Saviano,%20Antonio&rft.date=2020-11-01&rft.volume=73&rft.issue=5&rft.spage=1219&rft.epage=1230&rft.pages=1219-1230&rft.issn=0168-8278&rft.eissn=1600-0641&rft_id=info:doi/10.1016/j.jhep.2020.06.004&rft_dat=%3Cproquest_pubme%3E2486865261%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486865261&rft_id=info:pmid/32534107&rft_els_id=S016882782030372X&rfr_iscdi=true