Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics

Mitochondria undergo dynamic fusion/fission, biogenesis and mitophagy in response to stimuli or stresses. Disruption of mitochondrial homeostasis could lead to cell senescence, although the underlying mechanism remains unclear. We show that deletion of mitochondrial phosphatase PGAM5 leads to accele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-05, Vol.11 (1), p.2549-2549, Article 2549
Hauptverfasser: Yu, Bo, Ma, Jing, Li, Jing, Wang, Dazhi, Wang, Zhigao, Wang, Shusheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2549
container_issue 1
container_start_page 2549
container_title Nature communications
container_volume 11
creator Yu, Bo
Ma, Jing
Li, Jing
Wang, Dazhi
Wang, Zhigao
Wang, Shusheng
description Mitochondria undergo dynamic fusion/fission, biogenesis and mitophagy in response to stimuli or stresses. Disruption of mitochondrial homeostasis could lead to cell senescence, although the underlying mechanism remains unclear. We show that deletion of mitochondrial phosphatase PGAM5 leads to accelerated retinal pigment epithelial (RPE) senescence in vitro and in vivo. Mechanistically, PGAM5 is required for mitochondrial fission through dephosphorylating DRP1. PGAM5 deletion leads to increased mitochondrial fusion and decreased mitochondrial turnover. As results, cellular ATP and reactive oxygen species (ROS) levels are elevated, mTOR and IRF/IFN-β signaling pathways are enhanced, leading to cellular senescence. Overexpression of Drp1 K38A or S637A mutant phenocopies or rescues mTOR activation and senescence in PGAM5 − /− cells, respectively. Young but not aging Pgam5 −/− mice are resistant to sodium iodate-induced RPE cell death. Our studies establish a link between defective mitochondrial fission, cellular senescence and age-dependent oxidative stress response, which have implications in age-related diseases. Mitochondria are a hub that can direct cellular outcomes in response to stress. Here, the authors show that mitochondrial phosphatase PGAM5 has a role in mitochondrial turnover and regulation of cellular senescence by altering organellar dynamics via fission regulator Drp1.
doi_str_mv 10.1038/s41467-020-16312-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32439975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_78f439af309a43a889952c8065a38027</doaj_id><sourcerecordid>2405596054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-89047038e1ae83befa9fdb498c37754457f1f0bc27c07ccb86354e999af2db7c3</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEolXpH2CBIrFBQgG_HxukakQfUitYwNpyHHvGo8Qe7KRo_j1OU4YOC4Q3tuzvHt1zfarqNQQfIMDiYyaQMN4ABBrIMEQNf1adIkBgAznCz5-cT6rznLegLCyhIORldYIRwVJyelq1d36MZhNDl7zu690m5t1Gjzrb-uvVxR2th9hNvR5tro3t-3JMdbbBZmODsXW7r5Ndz4AP63o40ur2QQ_e5FfVC6f7bM8f97Pq--Xnb6vr5vbL1c3q4rYxDLCxERIQXpxZqK3ArXVauq4lUhjMOSWEcgcdaA3iBnBjWsEwJVZKqR3qWm7wWXWz6HZRb9Uu-UGnvYraq4eLmNZKp9Gb3iouXBmAdhhITbAWQkqKjACMaiwA4kXr06K1m9rBdsXsmHR_JHr8EvxGreO94oggLHERePcokOKPyeZRDT7PE9TBxikrRADDgGAqC_r2L3QbpxTKqGaKUskAJYVCC2VSzDlZd2gGAjUnQi2JUCUR6iERarbx5qmNQ8nv_y_A-wX4advosvHzrx6wEhmKOWCCzulhhRb_T6_8WFIRwypOYSyleCnNBQ9rm_6Y_Ef_vwCaaeJt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405596054</pqid></control><display><type>article</type><title>Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Yu, Bo ; Ma, Jing ; Li, Jing ; Wang, Dazhi ; Wang, Zhigao ; Wang, Shusheng</creator><creatorcontrib>Yu, Bo ; Ma, Jing ; Li, Jing ; Wang, Dazhi ; Wang, Zhigao ; Wang, Shusheng</creatorcontrib><description>Mitochondria undergo dynamic fusion/fission, biogenesis and mitophagy in response to stimuli or stresses. Disruption of mitochondrial homeostasis could lead to cell senescence, although the underlying mechanism remains unclear. We show that deletion of mitochondrial phosphatase PGAM5 leads to accelerated retinal pigment epithelial (RPE) senescence in vitro and in vivo. Mechanistically, PGAM5 is required for mitochondrial fission through dephosphorylating DRP1. PGAM5 deletion leads to increased mitochondrial fusion and decreased mitochondrial turnover. As results, cellular ATP and reactive oxygen species (ROS) levels are elevated, mTOR and IRF/IFN-β signaling pathways are enhanced, leading to cellular senescence. Overexpression of Drp1 K38A or S637A mutant phenocopies or rescues mTOR activation and senescence in PGAM5 − /− cells, respectively. Young but not aging Pgam5 −/− mice are resistant to sodium iodate-induced RPE cell death. Our studies establish a link between defective mitochondrial fission, cellular senescence and age-dependent oxidative stress response, which have implications in age-related diseases. Mitochondria are a hub that can direct cellular outcomes in response to stress. Here, the authors show that mitochondrial phosphatase PGAM5 has a role in mitochondrial turnover and regulation of cellular senescence by altering organellar dynamics via fission regulator Drp1.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-16312-7</identifier><identifier>PMID: 32439975</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 13/51 ; 13/95 ; 14/19 ; 45/77 ; 631/80/509 ; 631/80/642/333 ; 631/80/86 ; 64/60 ; 82/1 ; 82/51 ; 82/80 ; Age Factors ; Age related diseases ; Aging ; Animals ; Cell death ; Cell Line ; Cellular Senescence ; Cellular stress response ; Deletion ; Dynamins - genetics ; Dynamins - metabolism ; Fission ; Gene Expression Regulation ; Homeostasis ; Humanities and Social Sciences ; Humans ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial Dynamics ; multidisciplinary ; Multidisciplinary Sciences ; Oxidative stress ; Oxidative Stress - genetics ; Phosphatase ; Phosphoprotein Phosphatases - genetics ; Phosphoprotein Phosphatases - metabolism ; Reactive oxygen species ; Retinal Pigment Epithelium - metabolism ; Retinal Pigment Epithelium - pathology ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Senescence ; Signal Transduction ; TOR protein ; β-Interferon</subject><ispartof>Nature communications, 2020-05, Vol.11 (1), p.2549-2549, Article 2549</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>129</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000537068500006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c606t-89047038e1ae83befa9fdb498c37754457f1f0bc27c07ccb86354e999af2db7c3</citedby><cites>FETCH-LOGICAL-c606t-89047038e1ae83befa9fdb498c37754457f1f0bc27c07ccb86354e999af2db7c3</cites><orcidid>0000-0002-8841-5432 ; 0000-0002-6544-4302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242393/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242393/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,28257,41129,42198,51585,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32439975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Bo</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wang, Dazhi</creatorcontrib><creatorcontrib>Wang, Zhigao</creatorcontrib><creatorcontrib>Wang, Shusheng</creatorcontrib><title>Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>Mitochondria undergo dynamic fusion/fission, biogenesis and mitophagy in response to stimuli or stresses. Disruption of mitochondrial homeostasis could lead to cell senescence, although the underlying mechanism remains unclear. We show that deletion of mitochondrial phosphatase PGAM5 leads to accelerated retinal pigment epithelial (RPE) senescence in vitro and in vivo. Mechanistically, PGAM5 is required for mitochondrial fission through dephosphorylating DRP1. PGAM5 deletion leads to increased mitochondrial fusion and decreased mitochondrial turnover. As results, cellular ATP and reactive oxygen species (ROS) levels are elevated, mTOR and IRF/IFN-β signaling pathways are enhanced, leading to cellular senescence. Overexpression of Drp1 K38A or S637A mutant phenocopies or rescues mTOR activation and senescence in PGAM5 − /− cells, respectively. Young but not aging Pgam5 −/− mice are resistant to sodium iodate-induced RPE cell death. Our studies establish a link between defective mitochondrial fission, cellular senescence and age-dependent oxidative stress response, which have implications in age-related diseases. Mitochondria are a hub that can direct cellular outcomes in response to stress. Here, the authors show that mitochondrial phosphatase PGAM5 has a role in mitochondrial turnover and regulation of cellular senescence by altering organellar dynamics via fission regulator Drp1.</description><subject>13/31</subject><subject>13/51</subject><subject>13/95</subject><subject>14/19</subject><subject>45/77</subject><subject>631/80/509</subject><subject>631/80/642/333</subject><subject>631/80/86</subject><subject>64/60</subject><subject>82/1</subject><subject>82/51</subject><subject>82/80</subject><subject>Age Factors</subject><subject>Age related diseases</subject><subject>Aging</subject><subject>Animals</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Cellular Senescence</subject><subject>Cellular stress response</subject><subject>Deletion</subject><subject>Dynamins - genetics</subject><subject>Dynamins - metabolism</subject><subject>Fission</subject><subject>Gene Expression Regulation</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Dynamics</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>Phosphatase</subject><subject>Phosphoprotein Phosphatases - genetics</subject><subject>Phosphoprotein Phosphatases - metabolism</subject><subject>Reactive oxygen species</subject><subject>Retinal Pigment Epithelium - metabolism</subject><subject>Retinal Pigment Epithelium - pathology</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Senescence</subject><subject>Signal Transduction</subject><subject>TOR protein</subject><subject>β-Interferon</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEolXpH2CBIrFBQgG_HxukakQfUitYwNpyHHvGo8Qe7KRo_j1OU4YOC4Q3tuzvHt1zfarqNQQfIMDiYyaQMN4ABBrIMEQNf1adIkBgAznCz5-cT6rznLegLCyhIORldYIRwVJyelq1d36MZhNDl7zu690m5t1Gjzrb-uvVxR2th9hNvR5tro3t-3JMdbbBZmODsXW7r5Ndz4AP63o40ur2QQ_e5FfVC6f7bM8f97Pq--Xnb6vr5vbL1c3q4rYxDLCxERIQXpxZqK3ArXVauq4lUhjMOSWEcgcdaA3iBnBjWsEwJVZKqR3qWm7wWXWz6HZRb9Uu-UGnvYraq4eLmNZKp9Gb3iouXBmAdhhITbAWQkqKjACMaiwA4kXr06K1m9rBdsXsmHR_JHr8EvxGreO94oggLHERePcokOKPyeZRDT7PE9TBxikrRADDgGAqC_r2L3QbpxTKqGaKUskAJYVCC2VSzDlZd2gGAjUnQi2JUCUR6iERarbx5qmNQ8nv_y_A-wX4advosvHzrx6wEhmKOWCCzulhhRb_T6_8WFIRwypOYSyleCnNBQ9rm_6Y_Ef_vwCaaeJt</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Yu, Bo</creator><creator>Ma, Jing</creator><creator>Li, Jing</creator><creator>Wang, Dazhi</creator><creator>Wang, Zhigao</creator><creator>Wang, Shusheng</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8841-5432</orcidid><orcidid>https://orcid.org/0000-0002-6544-4302</orcidid></search><sort><creationdate>20200521</creationdate><title>Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics</title><author>Yu, Bo ; Ma, Jing ; Li, Jing ; Wang, Dazhi ; Wang, Zhigao ; Wang, Shusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-89047038e1ae83befa9fdb498c37754457f1f0bc27c07ccb86354e999af2db7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/31</topic><topic>13/51</topic><topic>13/95</topic><topic>14/19</topic><topic>45/77</topic><topic>631/80/509</topic><topic>631/80/642/333</topic><topic>631/80/86</topic><topic>64/60</topic><topic>82/1</topic><topic>82/51</topic><topic>82/80</topic><topic>Age Factors</topic><topic>Age related diseases</topic><topic>Aging</topic><topic>Animals</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Cellular Senescence</topic><topic>Cellular stress response</topic><topic>Deletion</topic><topic>Dynamins - genetics</topic><topic>Dynamins - metabolism</topic><topic>Fission</topic><topic>Gene Expression Regulation</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Dynamics</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>Phosphatase</topic><topic>Phosphoprotein Phosphatases - genetics</topic><topic>Phosphoprotein Phosphatases - metabolism</topic><topic>Reactive oxygen species</topic><topic>Retinal Pigment Epithelium - metabolism</topic><topic>Retinal Pigment Epithelium - pathology</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Senescence</topic><topic>Signal Transduction</topic><topic>TOR protein</topic><topic>β-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Bo</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wang, Dazhi</creatorcontrib><creatorcontrib>Wang, Zhigao</creatorcontrib><creatorcontrib>Wang, Shusheng</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Bo</au><au>Ma, Jing</au><au>Li, Jing</au><au>Wang, Dazhi</au><au>Wang, Zhigao</au><au>Wang, Shusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2020-05-21</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>2549</spage><epage>2549</epage><pages>2549-2549</pages><artnum>2549</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Mitochondria undergo dynamic fusion/fission, biogenesis and mitophagy in response to stimuli or stresses. Disruption of mitochondrial homeostasis could lead to cell senescence, although the underlying mechanism remains unclear. We show that deletion of mitochondrial phosphatase PGAM5 leads to accelerated retinal pigment epithelial (RPE) senescence in vitro and in vivo. Mechanistically, PGAM5 is required for mitochondrial fission through dephosphorylating DRP1. PGAM5 deletion leads to increased mitochondrial fusion and decreased mitochondrial turnover. As results, cellular ATP and reactive oxygen species (ROS) levels are elevated, mTOR and IRF/IFN-β signaling pathways are enhanced, leading to cellular senescence. Overexpression of Drp1 K38A or S637A mutant phenocopies or rescues mTOR activation and senescence in PGAM5 − /− cells, respectively. Young but not aging Pgam5 −/− mice are resistant to sodium iodate-induced RPE cell death. Our studies establish a link between defective mitochondrial fission, cellular senescence and age-dependent oxidative stress response, which have implications in age-related diseases. Mitochondria are a hub that can direct cellular outcomes in response to stress. Here, the authors show that mitochondrial phosphatase PGAM5 has a role in mitochondrial turnover and regulation of cellular senescence by altering organellar dynamics via fission regulator Drp1.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32439975</pmid><doi>10.1038/s41467-020-16312-7</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8841-5432</orcidid><orcidid>https://orcid.org/0000-0002-6544-4302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-05, Vol.11 (1), p.2549-2549, Article 2549
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmed_primary_32439975
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals
subjects 13/31
13/51
13/95
14/19
45/77
631/80/509
631/80/642/333
631/80/86
64/60
82/1
82/51
82/80
Age Factors
Age related diseases
Aging
Animals
Cell death
Cell Line
Cellular Senescence
Cellular stress response
Deletion
Dynamins - genetics
Dynamins - metabolism
Fission
Gene Expression Regulation
Homeostasis
Humanities and Social Sciences
Humans
Mice
Mice, Knockout
Mitochondria
Mitochondria - metabolism
Mitochondrial Dynamics
multidisciplinary
Multidisciplinary Sciences
Oxidative stress
Oxidative Stress - genetics
Phosphatase
Phosphoprotein Phosphatases - genetics
Phosphoprotein Phosphatases - metabolism
Reactive oxygen species
Retinal Pigment Epithelium - metabolism
Retinal Pigment Epithelium - pathology
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
Senescence
Signal Transduction
TOR protein
β-Interferon
title Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T08%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20phosphatase%20PGAM5%20modulates%20cellular%20senescence%20by%20regulating%20mitochondrial%20dynamics&rft.jtitle=Nature%20communications&rft.au=Yu,%20Bo&rft.date=2020-05-21&rft.volume=11&rft.issue=1&rft.spage=2549&rft.epage=2549&rft.pages=2549-2549&rft.artnum=2549&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-16312-7&rft_dat=%3Cproquest_pubme%3E2405596054%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405596054&rft_id=info:pmid/32439975&rft_doaj_id=oai_doaj_org_article_78f439af309a43a889952c8065a38027&rfr_iscdi=true