Self-driving laboratory for accelerated discovery of thin-film materials

Discovering and optimizing commercially viable materials for clean energy applications typically takes more than a decade. Self-driving laboratories that iteratively design, execute, and learn from materials science experiments in a fully autonomous loop present an opportunity to accelerate this res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2020-05, Vol.6 (20), p.eaaz8867-eaaz8867, Article 8867
Hauptverfasser: MacLeod, B. P., Parlane, F. G. L., Morrissey, T. D., Hase, F., Roch, L. M., Dettelbach, K. E., Moreira, R., Yunker, L. P. E., Rooney, M. B., Deeth, J. R., Lai, Ng, G. J., Situ, H., Zhang, R. H., Elliott, M. S., Haley, T. H., Dvorak, D. J., Aspuru-Guzik, A., Hein, J. E., Berlinguette, C. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eaaz8867
container_issue 20
container_start_page eaaz8867
container_title Science advances
container_volume 6
creator MacLeod, B. P.
Parlane, F. G. L.
Morrissey, T. D.
Hase, F.
Roch, L. M.
Dettelbach, K. E.
Moreira, R.
Yunker, L. P. E.
Rooney, M. B.
Deeth, J. R.
Lai
Ng, G. J.
Situ, H.
Zhang, R. H.
Elliott, M. S.
Haley, T. H.
Dvorak, D. J.
Aspuru-Guzik, A.
Hein, J. E.
Berlinguette, C. P.
description Discovering and optimizing commercially viable materials for clean energy applications typically takes more than a decade. Self-driving laboratories that iteratively design, execute, and learn from materials science experiments in a fully autonomous loop present an opportunity to accelerate this research process. We report here a modular robotic platform driven by a model-based optimization algorithm capable of autonomously optimizing the optical and electronic properties of thin-film materials by modifying the film composition and processing conditions. We demonstrate the power of this platform by using it to maximize the hole mobility of organic hole transport materials commonly used in perovskite solar cells and consumer electronics. This demonstration highlights the possibilities of using autonomous laboratories to discover organic and inorganic materials relevant to materials sciences and clean energy technologies.
doi_str_mv 10.1126/sciadv.aaz8867
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32426501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404643185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-5c6089641cdca9ff36b01223ca5d7a6942016d32ad5a9c8a331c9688220d91df3</originalsourceid><addsrcrecordid>eNqNkUlLBDEQhYMoKurVo_RRkB6zd_oiyOAGggf1HGqyaKS7o0nPiP56IzMOevNURd5Xr5I8hA4JnhBC5Wk2AexiAvCplGw20C5ljaip4GrzV7-DDnJ-wRgTLqUg7TbaYZRTKTDZRdf3rvO1TWERhqeqg1lMMMb0UfmYKjDGda4cOFvZkE1cuKJEX43PYah96PqqL2IK0OV9tOVLcQeruoceLy8eptf17d3VzfT8tjZcyLEWRmLVSk6MNdB6z-QME0qZAWEbkC2nmEjLKFgBrVHAGDGtVIpSbFtiPdtDZ0vf1_msd9a4YUzQ6dcUekgfOkLQf5UhPOunuNBNsWCyLQbHK4MU3-Yuj7ovT3NdB4OL86wpx1xyRpQo6GSJmhRzTs6v1xCsvxPQywT0KoEycPT7cmv8578LcLIE3t0s-jLtBuPWWMlIMCYaxkrHcKHV_-lpGGEMcZjG-TCyL0rPpZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404643185</pqid></control><display><type>article</type><title>Self-driving laboratory for accelerated discovery of thin-film materials</title><source>PubMed Central (Open Access)</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB Electronic Journals Library</source><creator>MacLeod, B. P. ; Parlane, F. G. L. ; Morrissey, T. D. ; Hase, F. ; Roch, L. M. ; Dettelbach, K. E. ; Moreira, R. ; Yunker, L. P. E. ; Rooney, M. B. ; Deeth, J. R. ; Lai ; Ng, G. J. ; Situ, H. ; Zhang, R. H. ; Elliott, M. S. ; Haley, T. H. ; Dvorak, D. J. ; Aspuru-Guzik, A. ; Hein, J. E. ; Berlinguette, C. P.</creator><creatorcontrib>MacLeod, B. P. ; Parlane, F. G. L. ; Morrissey, T. D. ; Hase, F. ; Roch, L. M. ; Dettelbach, K. E. ; Moreira, R. ; Yunker, L. P. E. ; Rooney, M. B. ; Deeth, J. R. ; Lai ; Ng, G. J. ; Situ, H. ; Zhang, R. H. ; Elliott, M. S. ; Haley, T. H. ; Dvorak, D. J. ; Aspuru-Guzik, A. ; Hein, J. E. ; Berlinguette, C. P.</creatorcontrib><description>Discovering and optimizing commercially viable materials for clean energy applications typically takes more than a decade. Self-driving laboratories that iteratively design, execute, and learn from materials science experiments in a fully autonomous loop present an opportunity to accelerate this research process. We report here a modular robotic platform driven by a model-based optimization algorithm capable of autonomously optimizing the optical and electronic properties of thin-film materials by modifying the film composition and processing conditions. We demonstrate the power of this platform by using it to maximize the hole mobility of organic hole transport materials commonly used in perovskite solar cells and consumer electronics. This demonstration highlights the possibilities of using autonomous laboratories to discover organic and inorganic materials relevant to materials sciences and clean energy technologies.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aaz8867</identifier><identifier>PMID: 32426501</identifier><language>eng</language><publisher>WASHINGTON: Amer Assoc Advancement Science</publisher><subject>Materials Science ; Multidisciplinary Sciences ; SciAdv r-articles ; Science &amp; Technology ; Science &amp; Technology - Other Topics</subject><ispartof>Science advances, 2020-05, Vol.6 (20), p.eaaz8867-eaaz8867, Article 8867</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>332</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000533573300030</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c456t-5c6089641cdca9ff36b01223ca5d7a6942016d32ad5a9c8a331c9688220d91df3</citedby><cites>FETCH-LOGICAL-c456t-5c6089641cdca9ff36b01223ca5d7a6942016d32ad5a9c8a331c9688220d91df3</cites><orcidid>0000-0003-4167-9657 ; 0000-0002-8627-5042 ; 0000-0002-8899-2926 ; 0000-0002-7789-2129 ; 0000-0002-8547-9318 ; 0000-0003-0065-9350 ; 0000-0002-2406-4522 ; 0000-0003-3711-9761 ; 0000-0001-6636-725X ; 0000-0002-3400-0848 ; 0000-0002-4345-3005 ; 0000-0001-5767-3693 ; 0000-0001-6875-849X ; 0000-0003-1771-2023 ; 0000-0002-8277-4434 ; 0000-0003-0153-3143 ; 0000-0003-0749-6486 ; 0000-0001-6095-6280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220369/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220369/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2118,27933,27934,28257,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32426501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacLeod, B. P.</creatorcontrib><creatorcontrib>Parlane, F. G. L.</creatorcontrib><creatorcontrib>Morrissey, T. D.</creatorcontrib><creatorcontrib>Hase, F.</creatorcontrib><creatorcontrib>Roch, L. M.</creatorcontrib><creatorcontrib>Dettelbach, K. E.</creatorcontrib><creatorcontrib>Moreira, R.</creatorcontrib><creatorcontrib>Yunker, L. P. E.</creatorcontrib><creatorcontrib>Rooney, M. B.</creatorcontrib><creatorcontrib>Deeth, J. R.</creatorcontrib><creatorcontrib>Lai</creatorcontrib><creatorcontrib>Ng, G. J.</creatorcontrib><creatorcontrib>Situ, H.</creatorcontrib><creatorcontrib>Zhang, R. H.</creatorcontrib><creatorcontrib>Elliott, M. S.</creatorcontrib><creatorcontrib>Haley, T. H.</creatorcontrib><creatorcontrib>Dvorak, D. J.</creatorcontrib><creatorcontrib>Aspuru-Guzik, A.</creatorcontrib><creatorcontrib>Hein, J. E.</creatorcontrib><creatorcontrib>Berlinguette, C. P.</creatorcontrib><title>Self-driving laboratory for accelerated discovery of thin-film materials</title><title>Science advances</title><addtitle>SCI ADV</addtitle><addtitle>Sci Adv</addtitle><description>Discovering and optimizing commercially viable materials for clean energy applications typically takes more than a decade. Self-driving laboratories that iteratively design, execute, and learn from materials science experiments in a fully autonomous loop present an opportunity to accelerate this research process. We report here a modular robotic platform driven by a model-based optimization algorithm capable of autonomously optimizing the optical and electronic properties of thin-film materials by modifying the film composition and processing conditions. We demonstrate the power of this platform by using it to maximize the hole mobility of organic hole transport materials commonly used in perovskite solar cells and consumer electronics. This demonstration highlights the possibilities of using autonomous laboratories to discover organic and inorganic materials relevant to materials sciences and clean energy technologies.</description><subject>Materials Science</subject><subject>Multidisciplinary Sciences</subject><subject>SciAdv r-articles</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkUlLBDEQhYMoKurVo_RRkB6zd_oiyOAGggf1HGqyaKS7o0nPiP56IzMOevNURd5Xr5I8hA4JnhBC5Wk2AexiAvCplGw20C5ljaip4GrzV7-DDnJ-wRgTLqUg7TbaYZRTKTDZRdf3rvO1TWERhqeqg1lMMMb0UfmYKjDGda4cOFvZkE1cuKJEX43PYah96PqqL2IK0OV9tOVLcQeruoceLy8eptf17d3VzfT8tjZcyLEWRmLVSk6MNdB6z-QME0qZAWEbkC2nmEjLKFgBrVHAGDGtVIpSbFtiPdtDZ0vf1_msd9a4YUzQ6dcUekgfOkLQf5UhPOunuNBNsWCyLQbHK4MU3-Yuj7ovT3NdB4OL86wpx1xyRpQo6GSJmhRzTs6v1xCsvxPQywT0KoEycPT7cmv8578LcLIE3t0s-jLtBuPWWMlIMCYaxkrHcKHV_-lpGGEMcZjG-TCyL0rPpZg</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>MacLeod, B. P.</creator><creator>Parlane, F. G. L.</creator><creator>Morrissey, T. D.</creator><creator>Hase, F.</creator><creator>Roch, L. M.</creator><creator>Dettelbach, K. E.</creator><creator>Moreira, R.</creator><creator>Yunker, L. P. E.</creator><creator>Rooney, M. B.</creator><creator>Deeth, J. R.</creator><creator>Lai</creator><creator>Ng, G. J.</creator><creator>Situ, H.</creator><creator>Zhang, R. H.</creator><creator>Elliott, M. S.</creator><creator>Haley, T. H.</creator><creator>Dvorak, D. J.</creator><creator>Aspuru-Guzik, A.</creator><creator>Hein, J. E.</creator><creator>Berlinguette, C. P.</creator><general>Amer Assoc Advancement Science</general><general>American Association for the Advancement of Science</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4167-9657</orcidid><orcidid>https://orcid.org/0000-0002-8627-5042</orcidid><orcidid>https://orcid.org/0000-0002-8899-2926</orcidid><orcidid>https://orcid.org/0000-0002-7789-2129</orcidid><orcidid>https://orcid.org/0000-0002-8547-9318</orcidid><orcidid>https://orcid.org/0000-0003-0065-9350</orcidid><orcidid>https://orcid.org/0000-0002-2406-4522</orcidid><orcidid>https://orcid.org/0000-0003-3711-9761</orcidid><orcidid>https://orcid.org/0000-0001-6636-725X</orcidid><orcidid>https://orcid.org/0000-0002-3400-0848</orcidid><orcidid>https://orcid.org/0000-0002-4345-3005</orcidid><orcidid>https://orcid.org/0000-0001-5767-3693</orcidid><orcidid>https://orcid.org/0000-0001-6875-849X</orcidid><orcidid>https://orcid.org/0000-0003-1771-2023</orcidid><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0003-0153-3143</orcidid><orcidid>https://orcid.org/0000-0003-0749-6486</orcidid><orcidid>https://orcid.org/0000-0001-6095-6280</orcidid></search><sort><creationdate>20200501</creationdate><title>Self-driving laboratory for accelerated discovery of thin-film materials</title><author>MacLeod, B. P. ; Parlane, F. G. L. ; Morrissey, T. D. ; Hase, F. ; Roch, L. M. ; Dettelbach, K. E. ; Moreira, R. ; Yunker, L. P. E. ; Rooney, M. B. ; Deeth, J. R. ; Lai ; Ng, G. J. ; Situ, H. ; Zhang, R. H. ; Elliott, M. S. ; Haley, T. H. ; Dvorak, D. J. ; Aspuru-Guzik, A. ; Hein, J. E. ; Berlinguette, C. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-5c6089641cdca9ff36b01223ca5d7a6942016d32ad5a9c8a331c9688220d91df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Materials Science</topic><topic>Multidisciplinary Sciences</topic><topic>SciAdv r-articles</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacLeod, B. P.</creatorcontrib><creatorcontrib>Parlane, F. G. L.</creatorcontrib><creatorcontrib>Morrissey, T. D.</creatorcontrib><creatorcontrib>Hase, F.</creatorcontrib><creatorcontrib>Roch, L. M.</creatorcontrib><creatorcontrib>Dettelbach, K. E.</creatorcontrib><creatorcontrib>Moreira, R.</creatorcontrib><creatorcontrib>Yunker, L. P. E.</creatorcontrib><creatorcontrib>Rooney, M. B.</creatorcontrib><creatorcontrib>Deeth, J. R.</creatorcontrib><creatorcontrib>Lai</creatorcontrib><creatorcontrib>Ng, G. J.</creatorcontrib><creatorcontrib>Situ, H.</creatorcontrib><creatorcontrib>Zhang, R. H.</creatorcontrib><creatorcontrib>Elliott, M. S.</creatorcontrib><creatorcontrib>Haley, T. H.</creatorcontrib><creatorcontrib>Dvorak, D. J.</creatorcontrib><creatorcontrib>Aspuru-Guzik, A.</creatorcontrib><creatorcontrib>Hein, J. E.</creatorcontrib><creatorcontrib>Berlinguette, C. P.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacLeod, B. P.</au><au>Parlane, F. G. L.</au><au>Morrissey, T. D.</au><au>Hase, F.</au><au>Roch, L. M.</au><au>Dettelbach, K. E.</au><au>Moreira, R.</au><au>Yunker, L. P. E.</au><au>Rooney, M. B.</au><au>Deeth, J. R.</au><au>Lai</au><au>Ng, G. J.</au><au>Situ, H.</au><au>Zhang, R. H.</au><au>Elliott, M. S.</au><au>Haley, T. H.</au><au>Dvorak, D. J.</au><au>Aspuru-Guzik, A.</au><au>Hein, J. E.</au><au>Berlinguette, C. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-driving laboratory for accelerated discovery of thin-film materials</atitle><jtitle>Science advances</jtitle><stitle>SCI ADV</stitle><addtitle>Sci Adv</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>6</volume><issue>20</issue><spage>eaaz8867</spage><epage>eaaz8867</epage><pages>eaaz8867-eaaz8867</pages><artnum>8867</artnum><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Discovering and optimizing commercially viable materials for clean energy applications typically takes more than a decade. Self-driving laboratories that iteratively design, execute, and learn from materials science experiments in a fully autonomous loop present an opportunity to accelerate this research process. We report here a modular robotic platform driven by a model-based optimization algorithm capable of autonomously optimizing the optical and electronic properties of thin-film materials by modifying the film composition and processing conditions. We demonstrate the power of this platform by using it to maximize the hole mobility of organic hole transport materials commonly used in perovskite solar cells and consumer electronics. This demonstration highlights the possibilities of using autonomous laboratories to discover organic and inorganic materials relevant to materials sciences and clean energy technologies.</abstract><cop>WASHINGTON</cop><pub>Amer Assoc Advancement Science</pub><pmid>32426501</pmid><doi>10.1126/sciadv.aaz8867</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4167-9657</orcidid><orcidid>https://orcid.org/0000-0002-8627-5042</orcidid><orcidid>https://orcid.org/0000-0002-8899-2926</orcidid><orcidid>https://orcid.org/0000-0002-7789-2129</orcidid><orcidid>https://orcid.org/0000-0002-8547-9318</orcidid><orcidid>https://orcid.org/0000-0003-0065-9350</orcidid><orcidid>https://orcid.org/0000-0002-2406-4522</orcidid><orcidid>https://orcid.org/0000-0003-3711-9761</orcidid><orcidid>https://orcid.org/0000-0001-6636-725X</orcidid><orcidid>https://orcid.org/0000-0002-3400-0848</orcidid><orcidid>https://orcid.org/0000-0002-4345-3005</orcidid><orcidid>https://orcid.org/0000-0001-5767-3693</orcidid><orcidid>https://orcid.org/0000-0001-6875-849X</orcidid><orcidid>https://orcid.org/0000-0003-1771-2023</orcidid><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0003-0153-3143</orcidid><orcidid>https://orcid.org/0000-0003-0749-6486</orcidid><orcidid>https://orcid.org/0000-0001-6095-6280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-05, Vol.6 (20), p.eaaz8867-eaaz8867, Article 8867
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmed_primary_32426501
source PubMed Central (Open Access); DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB Electronic Journals Library
subjects Materials Science
Multidisciplinary Sciences
SciAdv r-articles
Science & Technology
Science & Technology - Other Topics
title Self-driving laboratory for accelerated discovery of thin-film materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T16%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-driving%20laboratory%20for%20accelerated%20discovery%20of%20thin-film%20materials&rft.jtitle=Science%20advances&rft.au=MacLeod,%20B.%20P.&rft.date=2020-05-01&rft.volume=6&rft.issue=20&rft.spage=eaaz8867&rft.epage=eaaz8867&rft.pages=eaaz8867-eaaz8867&rft.artnum=8867&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aaz8867&rft_dat=%3Cproquest_pubme%3E2404643185%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404643185&rft_id=info:pmid/32426501&rfr_iscdi=true