The Effect of Estimation Methods on SEM Fit Indices

We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Educational and psychological measurement 2020-06, Vol.80 (3), p.421-445
Hauptverfasser: Shi, Dexin, Maydeu-Olivares, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue 3
container_start_page 421
container_title Educational and psychological measurement
container_volume 80
creator Shi, Dexin
Maydeu-Olivares, Alberto
description We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI), and the standardized root mean square residual (SRMR). We considered different types and levels of misspecification in factor analysis models: misspecified dimensionality, omitting cross-loadings, and ignoring residual correlations. Estimation methods had substantial impacts on the RMSEA and CFI so that different cutoff values need to be employed for different estimators. In contrast, SRMR is robust to the method used to estimate the model parameters. The same criterion can be applied at the population level when using the SRMR to evaluate model fit, regardless of the choice of estimation method.
doi_str_mv 10.1177/0013164419885164
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32425213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1253305</ericid><sage_id>10.1177_0013164419885164</sage_id><sourcerecordid>2401740013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-53664d591c71bb96ec75a1e17499d1686952ec5ca227770a271d9f3bd764a2283</originalsourceid><addsrcrecordid>eNp1kT1PwzAQhi0EouVjZwFFYmEJ-PwRJwsSqlIoasVAmS3HcdpUaVziFIl_j6OWApXw4tO9z73n8yF0AfgWQIg7jIFCxBgkccx9cID6wDkJaRzHh6jfyWGn99CJcwvsDwM4Rj1KGOEEaB_R6dwEaVEY3Qa2CFLXlkvVlrYOJqad29wFPnxNJ8GwbINRnZfauDN0VKjKmfPtfYrehul08BSOXx5Hg4dxqDnHbchpFLGcJ6AFZFkSGS24AgOCJUkOURwlnBjNtSJECIEVEZAnBc1yETGfi-kput_4rtbZ0uTa1G2jKrlq_BObT2lVKf8qdTmXM_shBSHAEvAGlxsD05R6V5c-A-GUYu71m22Dxr6vjWvlsnTaVJWqjV07SRhmEfNW1KPXe-jCrpvaj99Rfqburz2FN5RurHONKXZNActuY3J_Y77k6veQu4LvFXkg3ABOzcxP138NvwBEF5jZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401740013</pqid></control><display><type>article</type><title>The Effect of Estimation Methods on SEM Fit Indices</title><source>ERIC - Full Text Only (Discovery)</source><source>SAGE Complete A-Z List</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shi, Dexin ; Maydeu-Olivares, Alberto</creator><creatorcontrib>Shi, Dexin ; Maydeu-Olivares, Alberto</creatorcontrib><description>We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI), and the standardized root mean square residual (SRMR). We considered different types and levels of misspecification in factor analysis models: misspecified dimensionality, omitting cross-loadings, and ignoring residual correlations. Estimation methods had substantial impacts on the RMSEA and CFI so that different cutoff values need to be employed for different estimators. In contrast, SRMR is robust to the method used to estimate the model parameters. The same criterion can be applied at the population level when using the SRMR to evaluate model fit, regardless of the choice of estimation method.</description><identifier>ISSN: 0013-1644</identifier><identifier>EISSN: 1552-3888</identifier><identifier>DOI: 10.1177/0013164419885164</identifier><identifier>PMID: 32425213</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Computation ; Error of Measurement ; Estimating techniques ; Factor Analysis ; Goodness of Fit ; Least Squares Statistics ; Maximum likelihood method ; Maximum Likelihood Statistics ; Structural equation modeling ; Structural Equation Models</subject><ispartof>Educational and psychological measurement, 2020-06, Vol.80 (3), p.421-445</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019.</rights><rights>The Author(s) 2019 2019 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-53664d591c71bb96ec75a1e17499d1686952ec5ca227770a271d9f3bd764a2283</citedby><cites>FETCH-LOGICAL-c550t-53664d591c71bb96ec75a1e17499d1686952ec5ca227770a271d9f3bd764a2283</cites><orcidid>0000-0002-4120-6756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221491/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221491/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,690,727,780,784,885,21819,27924,27925,43621,43622,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32425213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1253305$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Dexin</creatorcontrib><creatorcontrib>Maydeu-Olivares, Alberto</creatorcontrib><title>The Effect of Estimation Methods on SEM Fit Indices</title><title>Educational and psychological measurement</title><addtitle>Educ Psychol Meas</addtitle><description>We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI), and the standardized root mean square residual (SRMR). We considered different types and levels of misspecification in factor analysis models: misspecified dimensionality, omitting cross-loadings, and ignoring residual correlations. Estimation methods had substantial impacts on the RMSEA and CFI so that different cutoff values need to be employed for different estimators. In contrast, SRMR is robust to the method used to estimate the model parameters. The same criterion can be applied at the population level when using the SRMR to evaluate model fit, regardless of the choice of estimation method.</description><subject>Computation</subject><subject>Error of Measurement</subject><subject>Estimating techniques</subject><subject>Factor Analysis</subject><subject>Goodness of Fit</subject><subject>Least Squares Statistics</subject><subject>Maximum likelihood method</subject><subject>Maximum Likelihood Statistics</subject><subject>Structural equation modeling</subject><subject>Structural Equation Models</subject><issn>0013-1644</issn><issn>1552-3888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>GA5</sourceid><recordid>eNp1kT1PwzAQhi0EouVjZwFFYmEJ-PwRJwsSqlIoasVAmS3HcdpUaVziFIl_j6OWApXw4tO9z73n8yF0AfgWQIg7jIFCxBgkccx9cID6wDkJaRzHh6jfyWGn99CJcwvsDwM4Rj1KGOEEaB_R6dwEaVEY3Qa2CFLXlkvVlrYOJqad29wFPnxNJ8GwbINRnZfauDN0VKjKmfPtfYrehul08BSOXx5Hg4dxqDnHbchpFLGcJ6AFZFkSGS24AgOCJUkOURwlnBjNtSJECIEVEZAnBc1yETGfi-kput_4rtbZ0uTa1G2jKrlq_BObT2lVKf8qdTmXM_shBSHAEvAGlxsD05R6V5c-A-GUYu71m22Dxr6vjWvlsnTaVJWqjV07SRhmEfNW1KPXe-jCrpvaj99Rfqburz2FN5RurHONKXZNActuY3J_Y77k6veQu4LvFXkg3ABOzcxP138NvwBEF5jZ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Shi, Dexin</creator><creator>Maydeu-Olivares, Alberto</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ERI</scope><scope>GA5</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4120-6756</orcidid></search><sort><creationdate>20200601</creationdate><title>The Effect of Estimation Methods on SEM Fit Indices</title><author>Shi, Dexin ; Maydeu-Olivares, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-53664d591c71bb96ec75a1e17499d1686952ec5ca227770a271d9f3bd764a2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computation</topic><topic>Error of Measurement</topic><topic>Estimating techniques</topic><topic>Factor Analysis</topic><topic>Goodness of Fit</topic><topic>Least Squares Statistics</topic><topic>Maximum likelihood method</topic><topic>Maximum Likelihood Statistics</topic><topic>Structural equation modeling</topic><topic>Structural Equation Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Dexin</creatorcontrib><creatorcontrib>Maydeu-Olivares, Alberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ERIC</collection><collection>ERIC - Full Text Only (Discovery)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Educational and psychological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Dexin</au><au>Maydeu-Olivares, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1253305</ericid><atitle>The Effect of Estimation Methods on SEM Fit Indices</atitle><jtitle>Educational and psychological measurement</jtitle><addtitle>Educ Psychol Meas</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>80</volume><issue>3</issue><spage>421</spage><epage>445</epage><pages>421-445</pages><issn>0013-1644</issn><eissn>1552-3888</eissn><abstract>We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI), and the standardized root mean square residual (SRMR). We considered different types and levels of misspecification in factor analysis models: misspecified dimensionality, omitting cross-loadings, and ignoring residual correlations. Estimation methods had substantial impacts on the RMSEA and CFI so that different cutoff values need to be employed for different estimators. In contrast, SRMR is robust to the method used to estimate the model parameters. The same criterion can be applied at the population level when using the SRMR to evaluate model fit, regardless of the choice of estimation method.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>32425213</pmid><doi>10.1177/0013164419885164</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-4120-6756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-1644
ispartof Educational and psychological measurement, 2020-06, Vol.80 (3), p.421-445
issn 0013-1644
1552-3888
language eng
recordid cdi_pubmed_primary_32425213
source ERIC - Full Text Only (Discovery); SAGE Complete A-Z List; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Computation
Error of Measurement
Estimating techniques
Factor Analysis
Goodness of Fit
Least Squares Statistics
Maximum likelihood method
Maximum Likelihood Statistics
Structural equation modeling
Structural Equation Models
title The Effect of Estimation Methods on SEM Fit Indices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Estimation%20Methods%20on%20SEM%20Fit%20Indices&rft.jtitle=Educational%20and%20psychological%20measurement&rft.au=Shi,%20Dexin&rft.date=2020-06-01&rft.volume=80&rft.issue=3&rft.spage=421&rft.epage=445&rft.pages=421-445&rft.issn=0013-1644&rft.eissn=1552-3888&rft_id=info:doi/10.1177/0013164419885164&rft_dat=%3Cproquest_pubme%3E2401740013%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401740013&rft_id=info:pmid/32425213&rft_ericid=EJ1253305&rft_sage_id=10.1177_0013164419885164&rfr_iscdi=true