Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken

Glucose metabolism plays an important role in many normal and pathological physiological processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle activities. A genome-wide association study for muscle glycogen was performed in 474 Jingxing yellow chickens to iden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2020-04, Vol.11 (5), p.497, Article 497
Hauptverfasser: Liu, Xiaojing, Liu, Lu, Wang, Jie, Cui, Huanxian, Chu, Huanhuan, Bi, Huijuan, Zhao, Guiping, Wen, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 497
container_title Genes
container_volume 11
creator Liu, Xiaojing
Liu, Lu
Wang, Jie
Cui, Huanxian
Chu, Huanhuan
Bi, Huijuan
Zhao, Guiping
Wen, Jie
description Glucose metabolism plays an important role in many normal and pathological physiological processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle activities. A genome-wide association study for muscle glycogen was performed in 474 Jingxing yellow chickens to identify significant single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) involved in muscle glycogen metabolism. A total of nine SNPs (p < 1/699341) and three INDELs (p < 1/755733) reached a significant level of potential association. The following results were obtained through a series of analyses, including additive effects and gene function annotation. Two significant SNPs were found in introns 12 and 13 of copine 4 (CPNE4) on chromosome 2. The wild-type and mutant individuals had significant differences in glycogen metabolism at two loci (p < 0.01 for both). Individuals carrying two mutations had increased muscle glycogen content. According to the gene annotation of chromosome 11, there is a significant INDEL in intron 6 of naked cuticle homolog 1 (NKD1). After the INDEL mutation, the glycogen content increased significantly. There was a significant difference between wild-type and mutant individuals (p < 0.01). These mutations likely affecting two genes (CPNE4 and NKD1) may affect glycogen storage in a pleiotropic manner. Gene annotation indicates that CPNE4 and NKD1 may affect the process of glucose metabolism. Our findings contribute to understanding the genetic regulation of muscle glycogen metabolism and provide theoretical support.
doi_str_mv 10.3390/genes11050497
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32366026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398278614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-95e35d288f3e29df466b95528c628eba7f325f1fa4a35e693d45bda8a9ca4a003</originalsourceid><addsrcrecordid>eNqNkc9LHDEUx0NRqqjHXkvAo4zN5NdMLoIM7WpVemhFegqZzMsaO5voZKZ2_3uzXV30ZiAkJJ_3fY_vF6FPJTlmTJEvcwiQypIIwlX1Ae1SUrGCcyq2Xt130EFKdyQvTigh4iPaYZRJSajcRRczCHEBxY3vAJ-mFK03o48B_xynbomjw1dTsj3gWb-0MffDPuDvPsz_5Y1_Q9_HR9zcevsHwj7adqZPcPB87qHrb19_NWfF5Y_ZeXN6WVgu1FgoAUx0tK4dA6o6x6VslRC0tpLW0JrKMSpc6Qw3TIBUrOOi7UxtlM1PhLA9dLLWvZ_aBXQWwjiYXt8PfmGGpY7G67c_wd_qefyrK6oIIzwLHD4LDPFhgjTquzgNIc-sKVM1rWpZrqhiTdkhpjSA23QoiV7Zr9_Yn_nPr8fa0C9mZ6BeA4_QRpesh2Bhg-V8BKe0ktUqKdb48X8QTZzCmEuP3l_KngCY-6H3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398278614</pqid></control><display><type>article</type><title>Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Liu, Xiaojing ; Liu, Lu ; Wang, Jie ; Cui, Huanxian ; Chu, Huanhuan ; Bi, Huijuan ; Zhao, Guiping ; Wen, Jie</creator><creatorcontrib>Liu, Xiaojing ; Liu, Lu ; Wang, Jie ; Cui, Huanxian ; Chu, Huanhuan ; Bi, Huijuan ; Zhao, Guiping ; Wen, Jie</creatorcontrib><description>Glucose metabolism plays an important role in many normal and pathological physiological processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle activities. A genome-wide association study for muscle glycogen was performed in 474 Jingxing yellow chickens to identify significant single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) involved in muscle glycogen metabolism. A total of nine SNPs (p &lt; 1/699341) and three INDELs (p &lt; 1/755733) reached a significant level of potential association. The following results were obtained through a series of analyses, including additive effects and gene function annotation. Two significant SNPs were found in introns 12 and 13 of copine 4 (CPNE4) on chromosome 2. The wild-type and mutant individuals had significant differences in glycogen metabolism at two loci (p &lt; 0.01 for both). Individuals carrying two mutations had increased muscle glycogen content. According to the gene annotation of chromosome 11, there is a significant INDEL in intron 6 of naked cuticle homolog 1 (NKD1). After the INDEL mutation, the glycogen content increased significantly. There was a significant difference between wild-type and mutant individuals (p &lt; 0.01). These mutations likely affecting two genes (CPNE4 and NKD1) may affect glycogen storage in a pleiotropic manner. Gene annotation indicates that CPNE4 and NKD1 may affect the process of glucose metabolism. Our findings contribute to understanding the genetic regulation of muscle glycogen metabolism and provide theoretical support.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes11050497</identifier><identifier>PMID: 32366026</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Animals ; Calcium-Binding Proteins - genetics ; Chickens - genetics ; Chromosome 11 ; Chromosome 2 ; Deoxyribonucleic acid ; DNA ; Genetics &amp; Heredity ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Glucose ; Glucose metabolism ; Glycogen ; Glycogen - genetics ; Humans ; INDEL Mutation - genetics ; Introns ; Introns - genetics ; Life Sciences &amp; Biomedicine ; Meat quality ; Metabolism ; Molecular Sequence Annotation ; Muscle, Skeletal - metabolism ; Mutants ; Mutation ; Phenotype ; Physiology ; Polymorphism, Single Nucleotide - genetics ; Population ; Poultry ; Science &amp; Technology ; Single-nucleotide polymorphism ; Software ; Studies</subject><ispartof>Genes, 2020-04, Vol.11 (5), p.497, Article 497</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000542276700043</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c459t-95e35d288f3e29df466b95528c628eba7f325f1fa4a35e693d45bda8a9ca4a003</citedby><cites>FETCH-LOGICAL-c459t-95e35d288f3e29df466b95528c628eba7f325f1fa4a35e693d45bda8a9ca4a003</cites><orcidid>0000-0001-7460-4219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290304/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290304/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32366026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaojing</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Cui, Huanxian</creatorcontrib><creatorcontrib>Chu, Huanhuan</creatorcontrib><creatorcontrib>Bi, Huijuan</creatorcontrib><creatorcontrib>Zhao, Guiping</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><title>Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken</title><title>Genes</title><addtitle>GENES-BASEL</addtitle><addtitle>Genes (Basel)</addtitle><description>Glucose metabolism plays an important role in many normal and pathological physiological processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle activities. A genome-wide association study for muscle glycogen was performed in 474 Jingxing yellow chickens to identify significant single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) involved in muscle glycogen metabolism. A total of nine SNPs (p &lt; 1/699341) and three INDELs (p &lt; 1/755733) reached a significant level of potential association. The following results were obtained through a series of analyses, including additive effects and gene function annotation. Two significant SNPs were found in introns 12 and 13 of copine 4 (CPNE4) on chromosome 2. The wild-type and mutant individuals had significant differences in glycogen metabolism at two loci (p &lt; 0.01 for both). Individuals carrying two mutations had increased muscle glycogen content. According to the gene annotation of chromosome 11, there is a significant INDEL in intron 6 of naked cuticle homolog 1 (NKD1). After the INDEL mutation, the glycogen content increased significantly. There was a significant difference between wild-type and mutant individuals (p &lt; 0.01). These mutations likely affecting two genes (CPNE4 and NKD1) may affect glycogen storage in a pleiotropic manner. Gene annotation indicates that CPNE4 and NKD1 may affect the process of glucose metabolism. Our findings contribute to understanding the genetic regulation of muscle glycogen metabolism and provide theoretical support.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Animals</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Chickens - genetics</subject><subject>Chromosome 11</subject><subject>Chromosome 2</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Genetics &amp; Heredity</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glycogen</subject><subject>Glycogen - genetics</subject><subject>Humans</subject><subject>INDEL Mutation - genetics</subject><subject>Introns</subject><subject>Introns - genetics</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Meat quality</subject><subject>Metabolism</subject><subject>Molecular Sequence Annotation</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Physiology</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Population</subject><subject>Poultry</subject><subject>Science &amp; Technology</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Studies</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc9LHDEUx0NRqqjHXkvAo4zN5NdMLoIM7WpVemhFegqZzMsaO5voZKZ2_3uzXV30ZiAkJJ_3fY_vF6FPJTlmTJEvcwiQypIIwlX1Ae1SUrGCcyq2Xt130EFKdyQvTigh4iPaYZRJSajcRRczCHEBxY3vAJ-mFK03o48B_xynbomjw1dTsj3gWb-0MffDPuDvPsz_5Y1_Q9_HR9zcevsHwj7adqZPcPB87qHrb19_NWfF5Y_ZeXN6WVgu1FgoAUx0tK4dA6o6x6VslRC0tpLW0JrKMSpc6Qw3TIBUrOOi7UxtlM1PhLA9dLLWvZ_aBXQWwjiYXt8PfmGGpY7G67c_wd_qefyrK6oIIzwLHD4LDPFhgjTquzgNIc-sKVM1rWpZrqhiTdkhpjSA23QoiV7Zr9_Yn_nPr8fa0C9mZ6BeA4_QRpesh2Bhg-V8BKe0ktUqKdb48X8QTZzCmEuP3l_KngCY-6H3</recordid><startdate>20200430</startdate><enddate>20200430</enddate><creator>Liu, Xiaojing</creator><creator>Liu, Lu</creator><creator>Wang, Jie</creator><creator>Cui, Huanxian</creator><creator>Chu, Huanhuan</creator><creator>Bi, Huijuan</creator><creator>Zhao, Guiping</creator><creator>Wen, Jie</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7460-4219</orcidid></search><sort><creationdate>20200430</creationdate><title>Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken</title><author>Liu, Xiaojing ; Liu, Lu ; Wang, Jie ; Cui, Huanxian ; Chu, Huanhuan ; Bi, Huijuan ; Zhao, Guiping ; Wen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-95e35d288f3e29df466b95528c628eba7f325f1fa4a35e693d45bda8a9ca4a003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Animals</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Chickens - genetics</topic><topic>Chromosome 11</topic><topic>Chromosome 2</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Genetics &amp; Heredity</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glycogen</topic><topic>Glycogen - genetics</topic><topic>Humans</topic><topic>INDEL Mutation - genetics</topic><topic>Introns</topic><topic>Introns - genetics</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Meat quality</topic><topic>Metabolism</topic><topic>Molecular Sequence Annotation</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Physiology</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Population</topic><topic>Poultry</topic><topic>Science &amp; Technology</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaojing</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Cui, Huanxian</creatorcontrib><creatorcontrib>Chu, Huanhuan</creatorcontrib><creatorcontrib>Bi, Huijuan</creatorcontrib><creatorcontrib>Zhao, Guiping</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaojing</au><au>Liu, Lu</au><au>Wang, Jie</au><au>Cui, Huanxian</au><au>Chu, Huanhuan</au><au>Bi, Huijuan</au><au>Zhao, Guiping</au><au>Wen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken</atitle><jtitle>Genes</jtitle><stitle>GENES-BASEL</stitle><addtitle>Genes (Basel)</addtitle><date>2020-04-30</date><risdate>2020</risdate><volume>11</volume><issue>5</issue><spage>497</spage><pages>497-</pages><artnum>497</artnum><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Glucose metabolism plays an important role in many normal and pathological physiological processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle activities. A genome-wide association study for muscle glycogen was performed in 474 Jingxing yellow chickens to identify significant single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) involved in muscle glycogen metabolism. A total of nine SNPs (p &lt; 1/699341) and three INDELs (p &lt; 1/755733) reached a significant level of potential association. The following results were obtained through a series of analyses, including additive effects and gene function annotation. Two significant SNPs were found in introns 12 and 13 of copine 4 (CPNE4) on chromosome 2. The wild-type and mutant individuals had significant differences in glycogen metabolism at two loci (p &lt; 0.01 for both). Individuals carrying two mutations had increased muscle glycogen content. According to the gene annotation of chromosome 11, there is a significant INDEL in intron 6 of naked cuticle homolog 1 (NKD1). After the INDEL mutation, the glycogen content increased significantly. There was a significant difference between wild-type and mutant individuals (p &lt; 0.01). These mutations likely affecting two genes (CPNE4 and NKD1) may affect glycogen storage in a pleiotropic manner. Gene annotation indicates that CPNE4 and NKD1 may affect the process of glucose metabolism. Our findings contribute to understanding the genetic regulation of muscle glycogen metabolism and provide theoretical support.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32366026</pmid><doi>10.3390/genes11050497</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7460-4219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2020-04, Vol.11 (5), p.497, Article 497
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmed_primary_32366026
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Adaptor Proteins, Signal Transducing - genetics
Animals
Calcium-Binding Proteins - genetics
Chickens - genetics
Chromosome 11
Chromosome 2
Deoxyribonucleic acid
DNA
Genetics & Heredity
Genome-wide association studies
Genome-Wide Association Study
Genomes
Glucose
Glucose metabolism
Glycogen
Glycogen - genetics
Humans
INDEL Mutation - genetics
Introns
Introns - genetics
Life Sciences & Biomedicine
Meat quality
Metabolism
Molecular Sequence Annotation
Muscle, Skeletal - metabolism
Mutants
Mutation
Phenotype
Physiology
Polymorphism, Single Nucleotide - genetics
Population
Poultry
Science & Technology
Single-nucleotide polymorphism
Software
Studies
title Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Association%20Study%20of%20Muscle%20Glycogen%20in%20Jingxing%20Yellow%20Chicken&rft.jtitle=Genes&rft.au=Liu,%20Xiaojing&rft.date=2020-04-30&rft.volume=11&rft.issue=5&rft.spage=497&rft.pages=497-&rft.artnum=497&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes11050497&rft_dat=%3Cproquest_pubme%3E2398278614%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398278614&rft_id=info:pmid/32366026&rfr_iscdi=true