Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken
Glucose metabolism plays an important role in many normal and pathological physiological processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle activities. A genome-wide association study for muscle glycogen was performed in 474 Jingxing yellow chickens to iden...
Gespeichert in:
Veröffentlicht in: | Genes 2020-04, Vol.11 (5), p.497, Article 497 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 497 |
container_title | Genes |
container_volume | 11 |
creator | Liu, Xiaojing Liu, Lu Wang, Jie Cui, Huanxian Chu, Huanhuan Bi, Huijuan Zhao, Guiping Wen, Jie |
description | Glucose metabolism plays an important role in many normal and pathological physiological processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle activities. A genome-wide association study for muscle glycogen was performed in 474 Jingxing yellow chickens to identify significant single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) involved in muscle glycogen metabolism. A total of nine SNPs (p < 1/699341) and three INDELs (p < 1/755733) reached a significant level of potential association. The following results were obtained through a series of analyses, including additive effects and gene function annotation. Two significant SNPs were found in introns 12 and 13 of copine 4 (CPNE4) on chromosome 2. The wild-type and mutant individuals had significant differences in glycogen metabolism at two loci (p < 0.01 for both). Individuals carrying two mutations had increased muscle glycogen content. According to the gene annotation of chromosome 11, there is a significant INDEL in intron 6 of naked cuticle homolog 1 (NKD1). After the INDEL mutation, the glycogen content increased significantly. There was a significant difference between wild-type and mutant individuals (p < 0.01). These mutations likely affecting two genes (CPNE4 and NKD1) may affect glycogen storage in a pleiotropic manner. Gene annotation indicates that CPNE4 and NKD1 may affect the process of glucose metabolism. Our findings contribute to understanding the genetic regulation of muscle glycogen metabolism and provide theoretical support. |
doi_str_mv | 10.3390/genes11050497 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32366026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398278614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-95e35d288f3e29df466b95528c628eba7f325f1fa4a35e693d45bda8a9ca4a003</originalsourceid><addsrcrecordid>eNqNkc9LHDEUx0NRqqjHXkvAo4zN5NdMLoIM7WpVemhFegqZzMsaO5voZKZ2_3uzXV30ZiAkJJ_3fY_vF6FPJTlmTJEvcwiQypIIwlX1Ae1SUrGCcyq2Xt130EFKdyQvTigh4iPaYZRJSajcRRczCHEBxY3vAJ-mFK03o48B_xynbomjw1dTsj3gWb-0MffDPuDvPsz_5Y1_Q9_HR9zcevsHwj7adqZPcPB87qHrb19_NWfF5Y_ZeXN6WVgu1FgoAUx0tK4dA6o6x6VslRC0tpLW0JrKMSpc6Qw3TIBUrOOi7UxtlM1PhLA9dLLWvZ_aBXQWwjiYXt8PfmGGpY7G67c_wd_qefyrK6oIIzwLHD4LDPFhgjTquzgNIc-sKVM1rWpZrqhiTdkhpjSA23QoiV7Zr9_Yn_nPr8fa0C9mZ6BeA4_QRpesh2Bhg-V8BKe0ktUqKdb48X8QTZzCmEuP3l_KngCY-6H3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398278614</pqid></control><display><type>article</type><title>Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Liu, Xiaojing ; Liu, Lu ; Wang, Jie ; Cui, Huanxian ; Chu, Huanhuan ; Bi, Huijuan ; Zhao, Guiping ; Wen, Jie</creator><creatorcontrib>Liu, Xiaojing ; Liu, Lu ; Wang, Jie ; Cui, Huanxian ; Chu, Huanhuan ; Bi, Huijuan ; Zhao, Guiping ; Wen, Jie</creatorcontrib><description>Glucose metabolism plays an important role in many normal and pathological physiological processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle activities. A genome-wide association study for muscle glycogen was performed in 474 Jingxing yellow chickens to identify significant single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) involved in muscle glycogen metabolism. A total of nine SNPs (p < 1/699341) and three INDELs (p < 1/755733) reached a significant level of potential association. The following results were obtained through a series of analyses, including additive effects and gene function annotation. Two significant SNPs were found in introns 12 and 13 of copine 4 (CPNE4) on chromosome 2. The wild-type and mutant individuals had significant differences in glycogen metabolism at two loci (p < 0.01 for both). Individuals carrying two mutations had increased muscle glycogen content. According to the gene annotation of chromosome 11, there is a significant INDEL in intron 6 of naked cuticle homolog 1 (NKD1). After the INDEL mutation, the glycogen content increased significantly. There was a significant difference between wild-type and mutant individuals (p < 0.01). These mutations likely affecting two genes (CPNE4 and NKD1) may affect glycogen storage in a pleiotropic manner. Gene annotation indicates that CPNE4 and NKD1 may affect the process of glucose metabolism. Our findings contribute to understanding the genetic regulation of muscle glycogen metabolism and provide theoretical support.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes11050497</identifier><identifier>PMID: 32366026</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Animals ; Calcium-Binding Proteins - genetics ; Chickens - genetics ; Chromosome 11 ; Chromosome 2 ; Deoxyribonucleic acid ; DNA ; Genetics & Heredity ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Glucose ; Glucose metabolism ; Glycogen ; Glycogen - genetics ; Humans ; INDEL Mutation - genetics ; Introns ; Introns - genetics ; Life Sciences & Biomedicine ; Meat quality ; Metabolism ; Molecular Sequence Annotation ; Muscle, Skeletal - metabolism ; Mutants ; Mutation ; Phenotype ; Physiology ; Polymorphism, Single Nucleotide - genetics ; Population ; Poultry ; Science & Technology ; Single-nucleotide polymorphism ; Software ; Studies</subject><ispartof>Genes, 2020-04, Vol.11 (5), p.497, Article 497</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000542276700043</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c459t-95e35d288f3e29df466b95528c628eba7f325f1fa4a35e693d45bda8a9ca4a003</citedby><cites>FETCH-LOGICAL-c459t-95e35d288f3e29df466b95528c628eba7f325f1fa4a35e693d45bda8a9ca4a003</cites><orcidid>0000-0001-7460-4219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290304/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290304/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32366026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaojing</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Cui, Huanxian</creatorcontrib><creatorcontrib>Chu, Huanhuan</creatorcontrib><creatorcontrib>Bi, Huijuan</creatorcontrib><creatorcontrib>Zhao, Guiping</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><title>Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken</title><title>Genes</title><addtitle>GENES-BASEL</addtitle><addtitle>Genes (Basel)</addtitle><description>Glucose metabolism plays an important role in many normal and pathological physiological processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle activities. A genome-wide association study for muscle glycogen was performed in 474 Jingxing yellow chickens to identify significant single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) involved in muscle glycogen metabolism. A total of nine SNPs (p < 1/699341) and three INDELs (p < 1/755733) reached a significant level of potential association. The following results were obtained through a series of analyses, including additive effects and gene function annotation. Two significant SNPs were found in introns 12 and 13 of copine 4 (CPNE4) on chromosome 2. The wild-type and mutant individuals had significant differences in glycogen metabolism at two loci (p < 0.01 for both). Individuals carrying two mutations had increased muscle glycogen content. According to the gene annotation of chromosome 11, there is a significant INDEL in intron 6 of naked cuticle homolog 1 (NKD1). After the INDEL mutation, the glycogen content increased significantly. There was a significant difference between wild-type and mutant individuals (p < 0.01). These mutations likely affecting two genes (CPNE4 and NKD1) may affect glycogen storage in a pleiotropic manner. Gene annotation indicates that CPNE4 and NKD1 may affect the process of glucose metabolism. Our findings contribute to understanding the genetic regulation of muscle glycogen metabolism and provide theoretical support.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Animals</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Chickens - genetics</subject><subject>Chromosome 11</subject><subject>Chromosome 2</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Genetics & Heredity</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glycogen</subject><subject>Glycogen - genetics</subject><subject>Humans</subject><subject>INDEL Mutation - genetics</subject><subject>Introns</subject><subject>Introns - genetics</subject><subject>Life Sciences & Biomedicine</subject><subject>Meat quality</subject><subject>Metabolism</subject><subject>Molecular Sequence Annotation</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Physiology</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Population</subject><subject>Poultry</subject><subject>Science & Technology</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Studies</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc9LHDEUx0NRqqjHXkvAo4zN5NdMLoIM7WpVemhFegqZzMsaO5voZKZ2_3uzXV30ZiAkJJ_3fY_vF6FPJTlmTJEvcwiQypIIwlX1Ae1SUrGCcyq2Xt130EFKdyQvTigh4iPaYZRJSajcRRczCHEBxY3vAJ-mFK03o48B_xynbomjw1dTsj3gWb-0MffDPuDvPsz_5Y1_Q9_HR9zcevsHwj7adqZPcPB87qHrb19_NWfF5Y_ZeXN6WVgu1FgoAUx0tK4dA6o6x6VslRC0tpLW0JrKMSpc6Qw3TIBUrOOi7UxtlM1PhLA9dLLWvZ_aBXQWwjiYXt8PfmGGpY7G67c_wd_qefyrK6oIIzwLHD4LDPFhgjTquzgNIc-sKVM1rWpZrqhiTdkhpjSA23QoiV7Zr9_Yn_nPr8fa0C9mZ6BeA4_QRpesh2Bhg-V8BKe0ktUqKdb48X8QTZzCmEuP3l_KngCY-6H3</recordid><startdate>20200430</startdate><enddate>20200430</enddate><creator>Liu, Xiaojing</creator><creator>Liu, Lu</creator><creator>Wang, Jie</creator><creator>Cui, Huanxian</creator><creator>Chu, Huanhuan</creator><creator>Bi, Huijuan</creator><creator>Zhao, Guiping</creator><creator>Wen, Jie</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7460-4219</orcidid></search><sort><creationdate>20200430</creationdate><title>Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken</title><author>Liu, Xiaojing ; Liu, Lu ; Wang, Jie ; Cui, Huanxian ; Chu, Huanhuan ; Bi, Huijuan ; Zhao, Guiping ; Wen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-95e35d288f3e29df466b95528c628eba7f325f1fa4a35e693d45bda8a9ca4a003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Animals</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Chickens - genetics</topic><topic>Chromosome 11</topic><topic>Chromosome 2</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Genetics & Heredity</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glycogen</topic><topic>Glycogen - genetics</topic><topic>Humans</topic><topic>INDEL Mutation - genetics</topic><topic>Introns</topic><topic>Introns - genetics</topic><topic>Life Sciences & Biomedicine</topic><topic>Meat quality</topic><topic>Metabolism</topic><topic>Molecular Sequence Annotation</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Physiology</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Population</topic><topic>Poultry</topic><topic>Science & Technology</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaojing</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Cui, Huanxian</creatorcontrib><creatorcontrib>Chu, Huanhuan</creatorcontrib><creatorcontrib>Bi, Huijuan</creatorcontrib><creatorcontrib>Zhao, Guiping</creatorcontrib><creatorcontrib>Wen, Jie</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaojing</au><au>Liu, Lu</au><au>Wang, Jie</au><au>Cui, Huanxian</au><au>Chu, Huanhuan</au><au>Bi, Huijuan</au><au>Zhao, Guiping</au><au>Wen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken</atitle><jtitle>Genes</jtitle><stitle>GENES-BASEL</stitle><addtitle>Genes (Basel)</addtitle><date>2020-04-30</date><risdate>2020</risdate><volume>11</volume><issue>5</issue><spage>497</spage><pages>497-</pages><artnum>497</artnum><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Glucose metabolism plays an important role in many normal and pathological physiological processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle activities. A genome-wide association study for muscle glycogen was performed in 474 Jingxing yellow chickens to identify significant single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) involved in muscle glycogen metabolism. A total of nine SNPs (p < 1/699341) and three INDELs (p < 1/755733) reached a significant level of potential association. The following results were obtained through a series of analyses, including additive effects and gene function annotation. Two significant SNPs were found in introns 12 and 13 of copine 4 (CPNE4) on chromosome 2. The wild-type and mutant individuals had significant differences in glycogen metabolism at two loci (p < 0.01 for both). Individuals carrying two mutations had increased muscle glycogen content. According to the gene annotation of chromosome 11, there is a significant INDEL in intron 6 of naked cuticle homolog 1 (NKD1). After the INDEL mutation, the glycogen content increased significantly. There was a significant difference between wild-type and mutant individuals (p < 0.01). These mutations likely affecting two genes (CPNE4 and NKD1) may affect glycogen storage in a pleiotropic manner. Gene annotation indicates that CPNE4 and NKD1 may affect the process of glucose metabolism. Our findings contribute to understanding the genetic regulation of muscle glycogen metabolism and provide theoretical support.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32366026</pmid><doi>10.3390/genes11050497</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7460-4219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4425 |
ispartof | Genes, 2020-04, Vol.11 (5), p.497, Article 497 |
issn | 2073-4425 2073-4425 |
language | eng |
recordid | cdi_pubmed_primary_32366026 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Adaptor Proteins, Signal Transducing - genetics Animals Calcium-Binding Proteins - genetics Chickens - genetics Chromosome 11 Chromosome 2 Deoxyribonucleic acid DNA Genetics & Heredity Genome-wide association studies Genome-Wide Association Study Genomes Glucose Glucose metabolism Glycogen Glycogen - genetics Humans INDEL Mutation - genetics Introns Introns - genetics Life Sciences & Biomedicine Meat quality Metabolism Molecular Sequence Annotation Muscle, Skeletal - metabolism Mutants Mutation Phenotype Physiology Polymorphism, Single Nucleotide - genetics Population Poultry Science & Technology Single-nucleotide polymorphism Software Studies |
title | Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Association%20Study%20of%20Muscle%20Glycogen%20in%20Jingxing%20Yellow%20Chicken&rft.jtitle=Genes&rft.au=Liu,%20Xiaojing&rft.date=2020-04-30&rft.volume=11&rft.issue=5&rft.spage=497&rft.pages=497-&rft.artnum=497&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes11050497&rft_dat=%3Cproquest_pubme%3E2398278614%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398278614&rft_id=info:pmid/32366026&rfr_iscdi=true |