Sustainable agriwaste management at farm level through self-reliant farming system

Annually 500 M t organic wastes are produced in India from the agriculture sector. Transportation of bulky organic manures for centralized collection, processing and distribution to farms is cost prohibitive. Hence, recycling of agricultural wastes using vermicompost technology at the farm level is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste management & research 2020-07, Vol.38 (7), p.753-761, Article 0734242
Hauptverfasser: Rautaray, Sachin Kanta, Dubey, Rachana, Raychaudhuri, Sachidulal, Pradhan, Sanatan, Mohanty, Sheelabhadra, Mohanty, Rajeeb Kumar, Ambast, Sunil Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Annually 500 M t organic wastes are produced in India from the agriculture sector. Transportation of bulky organic manures for centralized collection, processing and distribution to farms is cost prohibitive. Hence, recycling of agricultural wastes using vermicompost technology at the farm level is a practical way of managing agriwaste for meeting the plant nutrient requirement. Our experience with a 1.584 ha farm for three years (2015–2016 to 2017–2018) revealed that 8.1 t vermicompost was produced in three batches from 24 t agriwastes produced within the farm area. The system productivity by recycling these farm generated agriwastes and run-off water was 18.05 t (≈11.4 t ha−1) rice equivalent yield which was higher by 2.6 times as compared to rice fallow (4.46 t ha−1). Also, the net return from this system (Indian rupees 70141 ha−1) was higher by 2.3 times, after considering the fixed cost towards construction of a water recycling pond. An increase in carbon stock in soil for the four years study period was 0.66 Mg ha−1 year−1 with the agriwaste recycling system under organic nutrition. For the inorganic fertilizer plot, the increase in carbon stock was 0.53 Mg ha−1 year−1. A decrease in bulk density from 1.56 to 1.46 Mg m−3, increase in water holding capacity from 0.43 to 0.52 cm3 cm−3 and increase in available P and K content in soil from 38.0 and 174.7 kg ha−1 to 45.8 and 186.5 kg ha−1, respectively, were noted. Thus, recycling of agricultural waste at the farm level is useful in improving soil health and crop productivity.
ISSN:0734-242X
1096-3669
DOI:10.1177/0734242X20920350