Ultralow Power Wearable Heterosynapse with Photoelectric Synergistic Modulation

Although the energy consumption of reported neuromorphic computing devices inspired by biological systems has become lower than traditional memory, it still remains greater than bio‐synapses (≈10 fJ per spike). Herein, a flexible MoS2‐based heterosynapse is designed with two modulation modes, an ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2020-04, Vol.7 (8), p.1903480-n/a, Article 1903480
Hauptverfasser: Wang, Tian‐Yu, Meng, Jia‐Lin, He, Zhen‐Yu, Chen, Lin, Zhu, Hao, Sun, Qing‐Qing, Ding, Shi‐Jin, Zhou, Peng, Zhang, David Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page 1903480
container_title Advanced science
container_volume 7
creator Wang, Tian‐Yu
Meng, Jia‐Lin
He, Zhen‐Yu
Chen, Lin
Zhu, Hao
Sun, Qing‐Qing
Ding, Shi‐Jin
Zhou, Peng
Zhang, David Wei
description Although the energy consumption of reported neuromorphic computing devices inspired by biological systems has become lower than traditional memory, it still remains greater than bio‐synapses (≈10 fJ per spike). Herein, a flexible MoS2‐based heterosynapse is designed with two modulation modes, an electronic mode and a photoexcited mode. A one‐step mechanical exfoliation method on flexible substrate and low‐temperature atomic layer deposition process compatible with flexible electronics are developed for fabricating wearable heterosynapses. With a pre‐spike of 100 ns, the synaptic device exhibits ultralow energy consumption of 18.3 aJ per spike in long‐term potentiation and 28.9 aJ per spike in long‐term depression. The ultrafast speed and ultralow power consumption provide a path for a neuromorphic computing system owning more excellent processing ability than the human brain. By adding optical modulation, a modulatory synapse is constructed to dynamically control correlations between pre‐ and post‐synapses and realize complex global neuromodulations. The novel wearable heterosynapse expands the accessible range of synaptic weights (ratio of facilitation ≈228%), providing an insight into the application of wearable 2D highly efficient neuromorphic computing architectures. A flexible MoS2‐based heterosynapse is designed with electronic and photoexcited modes. With an ultrafast pre‐spike of 100 ns, the synaptic device exhibits ultralow energy consumption of 18.3 aJ per spike in long‐term potentiation and 28.9 aJ per spike in long‐term depression. The ultrafast speed and ultralow power consumption pave the way for a computing system owning more excellent processing ability than the human brain.
doi_str_mv 10.1002/advs.201903480
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32328430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5aa25b2905a54e93bce35cb53c38b343</doaj_id><sourcerecordid>2406479286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5576-131a518e57fe666a09167d3e6f1188002a3a9d640a168ad53d5cb37a12f6fe233</originalsourceid><addsrcrecordid>eNqNks1vEzEQxVcIRKvQK0e0EhcklODv9V6QqgBtpaJWKoWjNeudTRxt1qm92yj_fZ0mRC0H4OSR_ZunGb-XZW8pmVBC2Ceo7-OEEVoSLjR5kR0zWuox10K8fFIfZScxLgghVPJCUP06O-KMMy04Oc6ubts-QOvX-bVfY8h_IQSoWszPscfg46aDVcR87fp5fj33vccWbR-czW82HYaZi32qv_t6aKF3vnuTvWqgjXiyP0fZ7bevP6bn48urs4vp6eXYSlmoMeUUJNUoiwaVUkBKqoqao2oo1TrtBhzKWgkCVGmoJa-lrXgBlDWqQcb5KLvY6dYeFmYV3BLCxnhw5vHCh5mBkEZr0UgAJitWEglSYMkrizypSW65rrjYan3eaa2Gaom1xW77Jc9En790bm5m_t4UtJBMlkngw14g-LsBY2-WLlpsW-jQD9EwXgpdCJJ8GmXv_0AXfghd-irDhFScCZWM-StFlChKplWiJjvKJqNiwOYwMiVmGxCzDYg5BCQ1vHu66AH_HYcE6B2wxso30TrsLB6wFCHJSkaVTBWTU9c_Wj71Q9en1o__35posaddi5t_zG1Ov_y8oSkm_AH_xOZY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406479286</pqid></control><display><type>article</type><title>Ultralow Power Wearable Heterosynapse with Photoelectric Synergistic Modulation</title><source>Wiley-Blackwell Journals</source><source>Wiley-Blackwell Open Access Collection</source><source>PubMed Central (Open access)</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Wang, Tian‐Yu ; Meng, Jia‐Lin ; He, Zhen‐Yu ; Chen, Lin ; Zhu, Hao ; Sun, Qing‐Qing ; Ding, Shi‐Jin ; Zhou, Peng ; Zhang, David Wei</creator><creatorcontrib>Wang, Tian‐Yu ; Meng, Jia‐Lin ; He, Zhen‐Yu ; Chen, Lin ; Zhu, Hao ; Sun, Qing‐Qing ; Ding, Shi‐Jin ; Zhou, Peng ; Zhang, David Wei</creatorcontrib><description>Although the energy consumption of reported neuromorphic computing devices inspired by biological systems has become lower than traditional memory, it still remains greater than bio‐synapses (≈10 fJ per spike). Herein, a flexible MoS2‐based heterosynapse is designed with two modulation modes, an electronic mode and a photoexcited mode. A one‐step mechanical exfoliation method on flexible substrate and low‐temperature atomic layer deposition process compatible with flexible electronics are developed for fabricating wearable heterosynapses. With a pre‐spike of 100 ns, the synaptic device exhibits ultralow energy consumption of 18.3 aJ per spike in long‐term potentiation and 28.9 aJ per spike in long‐term depression. The ultrafast speed and ultralow power consumption provide a path for a neuromorphic computing system owning more excellent processing ability than the human brain. By adding optical modulation, a modulatory synapse is constructed to dynamically control correlations between pre‐ and post‐synapses and realize complex global neuromodulations. The novel wearable heterosynapse expands the accessible range of synaptic weights (ratio of facilitation ≈228%), providing an insight into the application of wearable 2D highly efficient neuromorphic computing architectures. A flexible MoS2‐based heterosynapse is designed with electronic and photoexcited modes. With an ultrafast pre‐spike of 100 ns, the synaptic device exhibits ultralow energy consumption of 18.3 aJ per spike in long‐term potentiation and 28.9 aJ per spike in long‐term depression. The ultrafast speed and ultralow power consumption pave the way for a computing system owning more excellent processing ability than the human brain.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.201903480</identifier><identifier>PMID: 32328430</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>artificial heterosynapses ; Brain ; Chemistry ; Chemistry, Multidisciplinary ; Communication ; Communications ; Energy consumption ; High temperature ; Materials Science ; Materials Science, Multidisciplinary ; Microscopy ; Nanoscience &amp; Nanotechnology ; Neural networks ; neuromorphic computing architectures ; photoelectric synergistic modulation ; Physical Sciences ; Polyethylene terephthalate ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Silicon wafers ; synaptic devices ; Technology ; wearable electronics</subject><ispartof>Advanced science, 2020-04, Vol.7 (8), p.1903480-n/a, Article 1903480</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>119</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000529216500025</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5576-131a518e57fe666a09167d3e6f1188002a3a9d640a168ad53d5cb37a12f6fe233</citedby><cites>FETCH-LOGICAL-c5576-131a518e57fe666a09167d3e6f1188002a3a9d640a168ad53d5cb37a12f6fe233</cites><orcidid>0000-0002-7145-7564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175259/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175259/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,1419,2106,2118,11571,27933,27934,28257,45583,45584,46061,46485,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32328430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tian‐Yu</creatorcontrib><creatorcontrib>Meng, Jia‐Lin</creatorcontrib><creatorcontrib>He, Zhen‐Yu</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Sun, Qing‐Qing</creatorcontrib><creatorcontrib>Ding, Shi‐Jin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Zhang, David Wei</creatorcontrib><title>Ultralow Power Wearable Heterosynapse with Photoelectric Synergistic Modulation</title><title>Advanced science</title><addtitle>ADV SCI</addtitle><addtitle>Adv Sci (Weinh)</addtitle><description>Although the energy consumption of reported neuromorphic computing devices inspired by biological systems has become lower than traditional memory, it still remains greater than bio‐synapses (≈10 fJ per spike). Herein, a flexible MoS2‐based heterosynapse is designed with two modulation modes, an electronic mode and a photoexcited mode. A one‐step mechanical exfoliation method on flexible substrate and low‐temperature atomic layer deposition process compatible with flexible electronics are developed for fabricating wearable heterosynapses. With a pre‐spike of 100 ns, the synaptic device exhibits ultralow energy consumption of 18.3 aJ per spike in long‐term potentiation and 28.9 aJ per spike in long‐term depression. The ultrafast speed and ultralow power consumption provide a path for a neuromorphic computing system owning more excellent processing ability than the human brain. By adding optical modulation, a modulatory synapse is constructed to dynamically control correlations between pre‐ and post‐synapses and realize complex global neuromodulations. The novel wearable heterosynapse expands the accessible range of synaptic weights (ratio of facilitation ≈228%), providing an insight into the application of wearable 2D highly efficient neuromorphic computing architectures. A flexible MoS2‐based heterosynapse is designed with electronic and photoexcited modes. With an ultrafast pre‐spike of 100 ns, the synaptic device exhibits ultralow energy consumption of 18.3 aJ per spike in long‐term potentiation and 28.9 aJ per spike in long‐term depression. The ultrafast speed and ultralow power consumption pave the way for a computing system owning more excellent processing ability than the human brain.</description><subject>artificial heterosynapses</subject><subject>Brain</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Communication</subject><subject>Communications</subject><subject>Energy consumption</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Microscopy</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Neural networks</subject><subject>neuromorphic computing architectures</subject><subject>photoelectric synergistic modulation</subject><subject>Physical Sciences</subject><subject>Polyethylene terephthalate</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Silicon wafers</subject><subject>synaptic devices</subject><subject>Technology</subject><subject>wearable electronics</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1vEzEQxVcIRKvQK0e0EhcklODv9V6QqgBtpaJWKoWjNeudTRxt1qm92yj_fZ0mRC0H4OSR_ZunGb-XZW8pmVBC2Ceo7-OEEVoSLjR5kR0zWuox10K8fFIfZScxLgghVPJCUP06O-KMMy04Oc6ubts-QOvX-bVfY8h_IQSoWszPscfg46aDVcR87fp5fj33vccWbR-czW82HYaZi32qv_t6aKF3vnuTvWqgjXiyP0fZ7bevP6bn48urs4vp6eXYSlmoMeUUJNUoiwaVUkBKqoqao2oo1TrtBhzKWgkCVGmoJa-lrXgBlDWqQcb5KLvY6dYeFmYV3BLCxnhw5vHCh5mBkEZr0UgAJitWEglSYMkrizypSW65rrjYan3eaa2Gaom1xW77Jc9En790bm5m_t4UtJBMlkngw14g-LsBY2-WLlpsW-jQD9EwXgpdCJJ8GmXv_0AXfghd-irDhFScCZWM-StFlChKplWiJjvKJqNiwOYwMiVmGxCzDYg5BCQ1vHu66AH_HYcE6B2wxso30TrsLB6wFCHJSkaVTBWTU9c_Wj71Q9en1o__35posaddi5t_zG1Ov_y8oSkm_AH_xOZY</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wang, Tian‐Yu</creator><creator>Meng, Jia‐Lin</creator><creator>He, Zhen‐Yu</creator><creator>Chen, Lin</creator><creator>Zhu, Hao</creator><creator>Sun, Qing‐Qing</creator><creator>Ding, Shi‐Jin</creator><creator>Zhou, Peng</creator><creator>Zhang, David Wei</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7145-7564</orcidid></search><sort><creationdate>20200401</creationdate><title>Ultralow Power Wearable Heterosynapse with Photoelectric Synergistic Modulation</title><author>Wang, Tian‐Yu ; Meng, Jia‐Lin ; He, Zhen‐Yu ; Chen, Lin ; Zhu, Hao ; Sun, Qing‐Qing ; Ding, Shi‐Jin ; Zhou, Peng ; Zhang, David Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5576-131a518e57fe666a09167d3e6f1188002a3a9d640a168ad53d5cb37a12f6fe233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>artificial heterosynapses</topic><topic>Brain</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Communication</topic><topic>Communications</topic><topic>Energy consumption</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Microscopy</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Neural networks</topic><topic>neuromorphic computing architectures</topic><topic>photoelectric synergistic modulation</topic><topic>Physical Sciences</topic><topic>Polyethylene terephthalate</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Silicon wafers</topic><topic>synaptic devices</topic><topic>Technology</topic><topic>wearable electronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tian‐Yu</creatorcontrib><creatorcontrib>Meng, Jia‐Lin</creatorcontrib><creatorcontrib>He, Zhen‐Yu</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Sun, Qing‐Qing</creatorcontrib><creatorcontrib>Ding, Shi‐Jin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Zhang, David Wei</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tian‐Yu</au><au>Meng, Jia‐Lin</au><au>He, Zhen‐Yu</au><au>Chen, Lin</au><au>Zhu, Hao</au><au>Sun, Qing‐Qing</au><au>Ding, Shi‐Jin</au><au>Zhou, Peng</au><au>Zhang, David Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow Power Wearable Heterosynapse with Photoelectric Synergistic Modulation</atitle><jtitle>Advanced science</jtitle><stitle>ADV SCI</stitle><addtitle>Adv Sci (Weinh)</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>7</volume><issue>8</issue><spage>1903480</spage><epage>n/a</epage><pages>1903480-n/a</pages><artnum>1903480</artnum><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Although the energy consumption of reported neuromorphic computing devices inspired by biological systems has become lower than traditional memory, it still remains greater than bio‐synapses (≈10 fJ per spike). Herein, a flexible MoS2‐based heterosynapse is designed with two modulation modes, an electronic mode and a photoexcited mode. A one‐step mechanical exfoliation method on flexible substrate and low‐temperature atomic layer deposition process compatible with flexible electronics are developed for fabricating wearable heterosynapses. With a pre‐spike of 100 ns, the synaptic device exhibits ultralow energy consumption of 18.3 aJ per spike in long‐term potentiation and 28.9 aJ per spike in long‐term depression. The ultrafast speed and ultralow power consumption provide a path for a neuromorphic computing system owning more excellent processing ability than the human brain. By adding optical modulation, a modulatory synapse is constructed to dynamically control correlations between pre‐ and post‐synapses and realize complex global neuromodulations. The novel wearable heterosynapse expands the accessible range of synaptic weights (ratio of facilitation ≈228%), providing an insight into the application of wearable 2D highly efficient neuromorphic computing architectures. A flexible MoS2‐based heterosynapse is designed with electronic and photoexcited modes. With an ultrafast pre‐spike of 100 ns, the synaptic device exhibits ultralow energy consumption of 18.3 aJ per spike in long‐term potentiation and 28.9 aJ per spike in long‐term depression. The ultrafast speed and ultralow power consumption pave the way for a computing system owning more excellent processing ability than the human brain.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>32328430</pmid><doi>10.1002/advs.201903480</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7145-7564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2020-04, Vol.7 (8), p.1903480-n/a, Article 1903480
issn 2198-3844
2198-3844
language eng
recordid cdi_pubmed_primary_32328430
source Wiley-Blackwell Journals; Wiley-Blackwell Open Access Collection; PubMed Central (Open access); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Directory of Open Access Journals; EZB Electronic Journals Library
subjects artificial heterosynapses
Brain
Chemistry
Chemistry, Multidisciplinary
Communication
Communications
Energy consumption
High temperature
Materials Science
Materials Science, Multidisciplinary
Microscopy
Nanoscience & Nanotechnology
Neural networks
neuromorphic computing architectures
photoelectric synergistic modulation
Physical Sciences
Polyethylene terephthalate
Science & Technology
Science & Technology - Other Topics
Silicon wafers
synaptic devices
Technology
wearable electronics
title Ultralow Power Wearable Heterosynapse with Photoelectric Synergistic Modulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T15%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%20Power%20Wearable%20Heterosynapse%20with%20Photoelectric%20Synergistic%20Modulation&rft.jtitle=Advanced%20science&rft.au=Wang,%20Tian%E2%80%90Yu&rft.date=2020-04-01&rft.volume=7&rft.issue=8&rft.spage=1903480&rft.epage=n/a&rft.pages=1903480-n/a&rft.artnum=1903480&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.201903480&rft_dat=%3Cproquest_pubme%3E2406479286%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406479286&rft_id=info:pmid/32328430&rft_doaj_id=oai_doaj_org_article_5aa25b2905a54e93bce35cb53c38b343&rfr_iscdi=true