Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field

Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) design that is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2020-07, Vol.42 (7), p.1594-1605
Hauptverfasser: Zhou, Mingyuan, Ding, Yuqi, Ji, Yu, Young, S. Susan, Yu, Jingyi, Ye, Jinwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1605
container_issue 7
container_start_page 1594
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 42
creator Zhou, Mingyuan
Ding, Yuqi
Ji, Yu
Young, S. Susan
Yu, Jingyi
Ye, Jinwei
description Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) design that is able to recover the shape and reflectance of surfaces of various materials in one shot. Our CMSLF system consists of an array of cameras arranged on concentric circles where each ring captures a specific spectrum. Coupled with a multi-spectral ring light, we are able to sample viewpoint and lighting variations in a single shot via spectral multiplexing. We further show that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations across viewpoints. This property enables robust depth estimation for specular points. To estimate depth and multi-spectral reflectance map, we formulate a physics-based reflectance model for the CMSLF under the surface camera (S-Cam) representation. Extensive synthetic and real experiments show that our method outperforms the state-of-the-art shape reconstruction methods, especially for non-Lambertian surfaces.
doi_str_mv 10.1109/TPAMI.2020.2986764
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_32305895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9064908</ieee_id><sourcerecordid>2392480965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-86ba73b824cd736486c7442dadaf8d12a9e206ca7f376cc4f1f32899cbfc611c3</originalsourceid><addsrcrecordid>eNpdkF1PwjAUhhujEUT_gCZmiTfeDPu1rr0kRJQEIhG4brqug5KxzXa78N9bBLnw6pzkPO-bkweAewSHCEHxslqM5tMhhhgOseAsZfQC9JEgIiYJEZegDxHDMeeY98CN9zsIEU0guQY9gglMuEj6YLHcqsZEqsqjT1OURreq0ibsuq586zrd2rqK1t5Wm2hch1PVOqujeVe2Nl42gXeqjGZ2s22jiTVlfguuClV6c3eaA7CevK7G7_Hs4206Hs1iTVHaxpxlKiUZx1TnKWGUM51SinOVq4LnCCthMGRapQVJmda0QAXBXAidFZohpMkAPB97G1d_dca3cm-9NmWpKlN3XmIiMOVQsCSgT__QXd25KnwnMUUwQamAIlD4SGlXe-9MIRtn98p9SwTlwbf89S0PvuXJdwg9nqq7bG_yc-RPcAAejoA1xpzPAjIqICc_9ieDsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410517909</pqid></control><display><type>article</type><title>Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Mingyuan ; Ding, Yuqi ; Ji, Yu ; Young, S. Susan ; Yu, Jingyi ; Ye, Jinwei</creator><creatorcontrib>Zhou, Mingyuan ; Ding, Yuqi ; Ji, Yu ; Young, S. Susan ; Yu, Jingyi ; Ye, Jinwei</creatorcontrib><description>Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) design that is able to recover the shape and reflectance of surfaces of various materials in one shot. Our CMSLF system consists of an array of cameras arranged on concentric circles where each ring captures a specific spectrum. Coupled with a multi-spectral ring light, we are able to sample viewpoint and lighting variations in a single shot via spectral multiplexing. We further show that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations across viewpoints. This property enables robust depth estimation for specular points. To estimate depth and multi-spectral reflectance map, we formulate a physics-based reflectance model for the CMSLF under the surface camera (S-Cam) representation. Extensive synthetic and real experiments show that our method outperforms the state-of-the-art shape reconstruction methods, especially for non-Lambertian surfaces.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2020.2986764</identifier><identifier>PMID: 32305895</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cameras ; Computational modeling ; Computer vision ; Image reconstruction ; light field ; Light sources ; Lighting ; multi-spectral ; Multiplexing ; Non-Lambertian surfaces ; Reconstruction ; Shape ; Shape reconstruction ; Spectra ; Spectral reflectance ; Surface reconstruction ; surface reflectance</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2020-07, Vol.42 (7), p.1594-1605</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-86ba73b824cd736486c7442dadaf8d12a9e206ca7f376cc4f1f32899cbfc611c3</citedby><cites>FETCH-LOGICAL-c417t-86ba73b824cd736486c7442dadaf8d12a9e206ca7f376cc4f1f32899cbfc611c3</cites><orcidid>0000-0001-7780-7943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9064908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9064908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32305895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Mingyuan</creatorcontrib><creatorcontrib>Ding, Yuqi</creatorcontrib><creatorcontrib>Ji, Yu</creatorcontrib><creatorcontrib>Young, S. Susan</creatorcontrib><creatorcontrib>Yu, Jingyi</creatorcontrib><creatorcontrib>Ye, Jinwei</creatorcontrib><title>Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) design that is able to recover the shape and reflectance of surfaces of various materials in one shot. Our CMSLF system consists of an array of cameras arranged on concentric circles where each ring captures a specific spectrum. Coupled with a multi-spectral ring light, we are able to sample viewpoint and lighting variations in a single shot via spectral multiplexing. We further show that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations across viewpoints. This property enables robust depth estimation for specular points. To estimate depth and multi-spectral reflectance map, we formulate a physics-based reflectance model for the CMSLF under the surface camera (S-Cam) representation. Extensive synthetic and real experiments show that our method outperforms the state-of-the-art shape reconstruction methods, especially for non-Lambertian surfaces.</description><subject>Cameras</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Image reconstruction</subject><subject>light field</subject><subject>Light sources</subject><subject>Lighting</subject><subject>multi-spectral</subject><subject>Multiplexing</subject><subject>Non-Lambertian surfaces</subject><subject>Reconstruction</subject><subject>Shape</subject><subject>Shape reconstruction</subject><subject>Spectra</subject><subject>Spectral reflectance</subject><subject>Surface reconstruction</subject><subject>surface reflectance</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1PwjAUhhujEUT_gCZmiTfeDPu1rr0kRJQEIhG4brqug5KxzXa78N9bBLnw6pzkPO-bkweAewSHCEHxslqM5tMhhhgOseAsZfQC9JEgIiYJEZegDxHDMeeY98CN9zsIEU0guQY9gglMuEj6YLHcqsZEqsqjT1OURreq0ibsuq586zrd2rqK1t5Wm2hch1PVOqujeVe2Nl42gXeqjGZ2s22jiTVlfguuClV6c3eaA7CevK7G7_Hs4206Hs1iTVHaxpxlKiUZx1TnKWGUM51SinOVq4LnCCthMGRapQVJmda0QAXBXAidFZohpMkAPB97G1d_dca3cm-9NmWpKlN3XmIiMOVQsCSgT__QXd25KnwnMUUwQamAIlD4SGlXe-9MIRtn98p9SwTlwbf89S0PvuXJdwg9nqq7bG_yc-RPcAAejoA1xpzPAjIqICc_9ieDsA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zhou, Mingyuan</creator><creator>Ding, Yuqi</creator><creator>Ji, Yu</creator><creator>Young, S. Susan</creator><creator>Yu, Jingyi</creator><creator>Ye, Jinwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7780-7943</orcidid></search><sort><creationdate>20200701</creationdate><title>Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field</title><author>Zhou, Mingyuan ; Ding, Yuqi ; Ji, Yu ; Young, S. Susan ; Yu, Jingyi ; Ye, Jinwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-86ba73b824cd736486c7442dadaf8d12a9e206ca7f376cc4f1f32899cbfc611c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cameras</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Image reconstruction</topic><topic>light field</topic><topic>Light sources</topic><topic>Lighting</topic><topic>multi-spectral</topic><topic>Multiplexing</topic><topic>Non-Lambertian surfaces</topic><topic>Reconstruction</topic><topic>Shape</topic><topic>Shape reconstruction</topic><topic>Spectra</topic><topic>Spectral reflectance</topic><topic>Surface reconstruction</topic><topic>surface reflectance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Mingyuan</creatorcontrib><creatorcontrib>Ding, Yuqi</creatorcontrib><creatorcontrib>Ji, Yu</creatorcontrib><creatorcontrib>Young, S. Susan</creatorcontrib><creatorcontrib>Yu, Jingyi</creatorcontrib><creatorcontrib>Ye, Jinwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Mingyuan</au><au>Ding, Yuqi</au><au>Ji, Yu</au><au>Young, S. Susan</au><au>Yu, Jingyi</au><au>Ye, Jinwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>42</volume><issue>7</issue><spage>1594</spage><epage>1605</epage><pages>1594-1605</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) design that is able to recover the shape and reflectance of surfaces of various materials in one shot. Our CMSLF system consists of an array of cameras arranged on concentric circles where each ring captures a specific spectrum. Coupled with a multi-spectral ring light, we are able to sample viewpoint and lighting variations in a single shot via spectral multiplexing. We further show that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations across viewpoints. This property enables robust depth estimation for specular points. To estimate depth and multi-spectral reflectance map, we formulate a physics-based reflectance model for the CMSLF under the surface camera (S-Cam) representation. Extensive synthetic and real experiments show that our method outperforms the state-of-the-art shape reconstruction methods, especially for non-Lambertian surfaces.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32305895</pmid><doi>10.1109/TPAMI.2020.2986764</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7780-7943</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2020-07, Vol.42 (7), p.1594-1605
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_32305895
source IEEE Electronic Library (IEL)
subjects Cameras
Computational modeling
Computer vision
Image reconstruction
light field
Light sources
Lighting
multi-spectral
Multiplexing
Non-Lambertian surfaces
Reconstruction
Shape
Shape reconstruction
Spectra
Spectral reflectance
Surface reconstruction
surface reflectance
title Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20and%20Reflectance%20Reconstruction%20Using%20Concentric%20Multi-Spectral%20Light%20Field&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhou,%20Mingyuan&rft.date=2020-07-01&rft.volume=42&rft.issue=7&rft.spage=1594&rft.epage=1605&rft.pages=1594-1605&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2020.2986764&rft_dat=%3Cproquest_RIE%3E2392480965%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410517909&rft_id=info:pmid/32305895&rft_ieee_id=9064908&rfr_iscdi=true