Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field
Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) design that is...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2020-07, Vol.42 (7), p.1594-1605 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1605 |
---|---|
container_issue | 7 |
container_start_page | 1594 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 42 |
creator | Zhou, Mingyuan Ding, Yuqi Ji, Yu Young, S. Susan Yu, Jingyi Ye, Jinwei |
description | Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) design that is able to recover the shape and reflectance of surfaces of various materials in one shot. Our CMSLF system consists of an array of cameras arranged on concentric circles where each ring captures a specific spectrum. Coupled with a multi-spectral ring light, we are able to sample viewpoint and lighting variations in a single shot via spectral multiplexing. We further show that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations across viewpoints. This property enables robust depth estimation for specular points. To estimate depth and multi-spectral reflectance map, we formulate a physics-based reflectance model for the CMSLF under the surface camera (S-Cam) representation. Extensive synthetic and real experiments show that our method outperforms the state-of-the-art shape reconstruction methods, especially for non-Lambertian surfaces. |
doi_str_mv | 10.1109/TPAMI.2020.2986764 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_32305895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9064908</ieee_id><sourcerecordid>2392480965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-86ba73b824cd736486c7442dadaf8d12a9e206ca7f376cc4f1f32899cbfc611c3</originalsourceid><addsrcrecordid>eNpdkF1PwjAUhhujEUT_gCZmiTfeDPu1rr0kRJQEIhG4brqug5KxzXa78N9bBLnw6pzkPO-bkweAewSHCEHxslqM5tMhhhgOseAsZfQC9JEgIiYJEZegDxHDMeeY98CN9zsIEU0guQY9gglMuEj6YLHcqsZEqsqjT1OURreq0ibsuq586zrd2rqK1t5Wm2hch1PVOqujeVe2Nl42gXeqjGZ2s22jiTVlfguuClV6c3eaA7CevK7G7_Hs4206Hs1iTVHaxpxlKiUZx1TnKWGUM51SinOVq4LnCCthMGRapQVJmda0QAXBXAidFZohpMkAPB97G1d_dca3cm-9NmWpKlN3XmIiMOVQsCSgT__QXd25KnwnMUUwQamAIlD4SGlXe-9MIRtn98p9SwTlwbf89S0PvuXJdwg9nqq7bG_yc-RPcAAejoA1xpzPAjIqICc_9ieDsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410517909</pqid></control><display><type>article</type><title>Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Mingyuan ; Ding, Yuqi ; Ji, Yu ; Young, S. Susan ; Yu, Jingyi ; Ye, Jinwei</creator><creatorcontrib>Zhou, Mingyuan ; Ding, Yuqi ; Ji, Yu ; Young, S. Susan ; Yu, Jingyi ; Ye, Jinwei</creatorcontrib><description>Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) design that is able to recover the shape and reflectance of surfaces of various materials in one shot. Our CMSLF system consists of an array of cameras arranged on concentric circles where each ring captures a specific spectrum. Coupled with a multi-spectral ring light, we are able to sample viewpoint and lighting variations in a single shot via spectral multiplexing. We further show that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations across viewpoints. This property enables robust depth estimation for specular points. To estimate depth and multi-spectral reflectance map, we formulate a physics-based reflectance model for the CMSLF under the surface camera (S-Cam) representation. Extensive synthetic and real experiments show that our method outperforms the state-of-the-art shape reconstruction methods, especially for non-Lambertian surfaces.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2020.2986764</identifier><identifier>PMID: 32305895</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cameras ; Computational modeling ; Computer vision ; Image reconstruction ; light field ; Light sources ; Lighting ; multi-spectral ; Multiplexing ; Non-Lambertian surfaces ; Reconstruction ; Shape ; Shape reconstruction ; Spectra ; Spectral reflectance ; Surface reconstruction ; surface reflectance</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2020-07, Vol.42 (7), p.1594-1605</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-86ba73b824cd736486c7442dadaf8d12a9e206ca7f376cc4f1f32899cbfc611c3</citedby><cites>FETCH-LOGICAL-c417t-86ba73b824cd736486c7442dadaf8d12a9e206ca7f376cc4f1f32899cbfc611c3</cites><orcidid>0000-0001-7780-7943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9064908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9064908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32305895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Mingyuan</creatorcontrib><creatorcontrib>Ding, Yuqi</creatorcontrib><creatorcontrib>Ji, Yu</creatorcontrib><creatorcontrib>Young, S. Susan</creatorcontrib><creatorcontrib>Yu, Jingyi</creatorcontrib><creatorcontrib>Ye, Jinwei</creatorcontrib><title>Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) design that is able to recover the shape and reflectance of surfaces of various materials in one shot. Our CMSLF system consists of an array of cameras arranged on concentric circles where each ring captures a specific spectrum. Coupled with a multi-spectral ring light, we are able to sample viewpoint and lighting variations in a single shot via spectral multiplexing. We further show that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations across viewpoints. This property enables robust depth estimation for specular points. To estimate depth and multi-spectral reflectance map, we formulate a physics-based reflectance model for the CMSLF under the surface camera (S-Cam) representation. Extensive synthetic and real experiments show that our method outperforms the state-of-the-art shape reconstruction methods, especially for non-Lambertian surfaces.</description><subject>Cameras</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Image reconstruction</subject><subject>light field</subject><subject>Light sources</subject><subject>Lighting</subject><subject>multi-spectral</subject><subject>Multiplexing</subject><subject>Non-Lambertian surfaces</subject><subject>Reconstruction</subject><subject>Shape</subject><subject>Shape reconstruction</subject><subject>Spectra</subject><subject>Spectral reflectance</subject><subject>Surface reconstruction</subject><subject>surface reflectance</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1PwjAUhhujEUT_gCZmiTfeDPu1rr0kRJQEIhG4brqug5KxzXa78N9bBLnw6pzkPO-bkweAewSHCEHxslqM5tMhhhgOseAsZfQC9JEgIiYJEZegDxHDMeeY98CN9zsIEU0guQY9gglMuEj6YLHcqsZEqsqjT1OURreq0ibsuq586zrd2rqK1t5Wm2hch1PVOqujeVe2Nl42gXeqjGZ2s22jiTVlfguuClV6c3eaA7CevK7G7_Hs4206Hs1iTVHaxpxlKiUZx1TnKWGUM51SinOVq4LnCCthMGRapQVJmda0QAXBXAidFZohpMkAPB97G1d_dca3cm-9NmWpKlN3XmIiMOVQsCSgT__QXd25KnwnMUUwQamAIlD4SGlXe-9MIRtn98p9SwTlwbf89S0PvuXJdwg9nqq7bG_yc-RPcAAejoA1xpzPAjIqICc_9ieDsA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zhou, Mingyuan</creator><creator>Ding, Yuqi</creator><creator>Ji, Yu</creator><creator>Young, S. Susan</creator><creator>Yu, Jingyi</creator><creator>Ye, Jinwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7780-7943</orcidid></search><sort><creationdate>20200701</creationdate><title>Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field</title><author>Zhou, Mingyuan ; Ding, Yuqi ; Ji, Yu ; Young, S. Susan ; Yu, Jingyi ; Ye, Jinwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-86ba73b824cd736486c7442dadaf8d12a9e206ca7f376cc4f1f32899cbfc611c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cameras</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Image reconstruction</topic><topic>light field</topic><topic>Light sources</topic><topic>Lighting</topic><topic>multi-spectral</topic><topic>Multiplexing</topic><topic>Non-Lambertian surfaces</topic><topic>Reconstruction</topic><topic>Shape</topic><topic>Shape reconstruction</topic><topic>Spectra</topic><topic>Spectral reflectance</topic><topic>Surface reconstruction</topic><topic>surface reflectance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Mingyuan</creatorcontrib><creatorcontrib>Ding, Yuqi</creatorcontrib><creatorcontrib>Ji, Yu</creatorcontrib><creatorcontrib>Young, S. Susan</creatorcontrib><creatorcontrib>Yu, Jingyi</creatorcontrib><creatorcontrib>Ye, Jinwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Mingyuan</au><au>Ding, Yuqi</au><au>Ji, Yu</au><au>Young, S. Susan</au><au>Yu, Jingyi</au><au>Ye, Jinwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>42</volume><issue>7</issue><spage>1594</spage><epage>1605</epage><pages>1594-1605</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric multi-spectral light field (CMSLF) design that is able to recover the shape and reflectance of surfaces of various materials in one shot. Our CMSLF system consists of an array of cameras arranged on concentric circles where each ring captures a specific spectrum. Coupled with a multi-spectral ring light, we are able to sample viewpoint and lighting variations in a single shot via spectral multiplexing. We further show that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations across viewpoints. This property enables robust depth estimation for specular points. To estimate depth and multi-spectral reflectance map, we formulate a physics-based reflectance model for the CMSLF under the surface camera (S-Cam) representation. Extensive synthetic and real experiments show that our method outperforms the state-of-the-art shape reconstruction methods, especially for non-Lambertian surfaces.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32305895</pmid><doi>10.1109/TPAMI.2020.2986764</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7780-7943</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2020-07, Vol.42 (7), p.1594-1605 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pubmed_primary_32305895 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Computational modeling Computer vision Image reconstruction light field Light sources Lighting multi-spectral Multiplexing Non-Lambertian surfaces Reconstruction Shape Shape reconstruction Spectra Spectral reflectance Surface reconstruction surface reflectance |
title | Shape and Reflectance Reconstruction Using Concentric Multi-Spectral Light Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20and%20Reflectance%20Reconstruction%20Using%20Concentric%20Multi-Spectral%20Light%20Field&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhou,%20Mingyuan&rft.date=2020-07-01&rft.volume=42&rft.issue=7&rft.spage=1594&rft.epage=1605&rft.pages=1594-1605&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2020.2986764&rft_dat=%3Cproquest_RIE%3E2392480965%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410517909&rft_id=info:pmid/32305895&rft_ieee_id=9064908&rfr_iscdi=true |