Non-Contact Water Level Response Measurement of a Tubular Level Gauge Using Image Signals

The occurrence of excessive fluid sloshing during an earthquake can damage structures used to store fluids and can induce secondary disasters, such as environmental destruction and human casualties, due to discharge of the stored fluids. Thus, to prevent such disasters, it is important to accurately...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-04, Vol.20 (8), p.2217, Article 2217
Hauptverfasser: Kim, Sung-Wan, Park, Dong-Uk, Jeon, Bub-Gyu, Chang, Sung-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The occurrence of excessive fluid sloshing during an earthquake can damage structures used to store fluids and can induce secondary disasters, such as environmental destruction and human casualties, due to discharge of the stored fluids. Thus, to prevent such disasters, it is important to accurately predict the sloshing behavior of liquid storage tanks. Tubular level gauges, which visually show the fluid level of a liquid storage tank, are easy to install and economical compared to other water level gauges. They directly show the fluid level and can be applied for various fluids because they can be constructed with various materials according to the fluid characteristics and the intended use. Therefore, in this study, the shaking table test was conducted to verify the validity of the method for measuring the water level response of the tubular level gauge installed on a liquid storage tank using image signals. In addition, image enhancement methods were applied to distinguish between the float installed in the tubular level gauge and the gray level of the background.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20082217