Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics

The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily contr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2020-05, Vol.36 (17), p.4630-4636
Hauptverfasser: Muzzillo, Christopher P, Reese, Matthew O, Mansfield, Lorelle M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4636
container_issue 17
container_start_page 4630
container_title Langmuir
container_volume 36
creator Muzzillo, Christopher P
Reese, Matthew O
Mansfield, Lorelle M
description The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily controlled by varying the crack template thickness, which establishes a three-way tradeoff between the areal density of cracks, crack width, and spacing between cracks, which in turn determine final grid transmittance, grid sheet resistance, and the semiconductor resistance for a given solar cell. Since CFL uses a lift-off process, an additional constraint is that the metal thickness must be less than 1/3 of the crack template thickness. The transmittance/grid sheet resistance/wire spacing tradeoffs measured in this work were used to calculate solar cell performance: CFL-patterned grids should outperform screen-printed grids for narrow cells (0.5–2 cm wide) and/or cells with high semiconductor sheet resistance (≥100 Ω/sq), making CFL attractive for monolithically integrated thin-film photovoltaic modules.
doi_str_mv 10.1021/acs.langmuir.0c00276
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32275439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388829471</sourcerecordid><originalsourceid>FETCH-LOGICAL-a421t-8ad30f105e3d5aaf853352633d293e7847fd4b649bb29be7e976382f597dc0e83</originalsourceid><addsrcrecordid>eNqNkc1u1DAURi0EosPAGyBksUJCGRz_xM4SRUxBGkQX7Tpy7JsZl4k92E6rvj2uMu0SsbIX59x79X0Iva_Jpia0_qJN2hy130-zixtiCKGyeYFWtaCkEorKl2hFJGeV5A27QG9SuiWEtIy3r9EFo1QKztoV8tvZWz2Bz_qYcBjxTXJ-j7uozW-weOuOE965fAj7qE-HB5wDvtI5Q_T4OmqfTjoWF3fB29lkdwf4J5RR-DI6m_AYIr46hBzuwjFrZ9Jb9Gosi-Dd-V2jm-236-57tft1-aP7uqs0p3WulLaMjDURwKzQelSCMUEbxixtGUjF5Wj50PB2GGg7gIRWNkzRUbTSGgKKrdHHZW5I2fXJuAzmYIL3YHJfN6JVRVijTwt0iuHPDCn3k0sGjiVVCHPqKVNK0ZbLuqB8QU0MKUUY-1N0k44PfU36xzr6Ukf_VEd_rqNoH84b5mEC-yw95V8AtQD3MISx3AnewDNWChOMNILJ8iOyc1lnF3wXZp-L-vn_1UKThX688zbM0Zf4_338Xzwku28</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388829471</pqid></control><display><type>article</type><title>Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M</creator><creatorcontrib>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily controlled by varying the crack template thickness, which establishes a three-way tradeoff between the areal density of cracks, crack width, and spacing between cracks, which in turn determine final grid transmittance, grid sheet resistance, and the semiconductor resistance for a given solar cell. Since CFL uses a lift-off process, an additional constraint is that the metal thickness must be less than 1/3 of the crack template thickness. The transmittance/grid sheet resistance/wire spacing tradeoffs measured in this work were used to calculate solar cell performance: CFL-patterned grids should outperform screen-printed grids for narrow cells (0.5–2 cm wide) and/or cells with high semiconductor sheet resistance (≥100 Ω/sq), making CFL attractive for monolithically integrated thin-film photovoltaic modules.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.0c00276</identifier><identifier>PMID: 32275439</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; cracked film lithography ; Materials Science ; Materials Science, Multidisciplinary ; metal grids ; Physical Sciences ; Science &amp; Technology ; solar cells ; SOLAR ENERGY ; Technology ; transparent contacts</subject><ispartof>Langmuir, 2020-05, Vol.36 (17), p.4630-4636</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000530653700007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a421t-8ad30f105e3d5aaf853352633d293e7847fd4b649bb29be7e976382f597dc0e83</citedby><cites>FETCH-LOGICAL-a421t-8ad30f105e3d5aaf853352633d293e7847fd4b649bb29be7e976382f597dc0e83</cites><orcidid>0000-0002-6492-0098 ; 0000-0001-9927-5984 ; 0000000264920098 ; 0000000199275984 ; 0000000272064105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.0c00276$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c00276$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27080,27928,27929,28252,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32275439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1659876$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Muzzillo, Christopher P</creatorcontrib><creatorcontrib>Reese, Matthew O</creatorcontrib><creatorcontrib>Mansfield, Lorelle M</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics</title><title>Langmuir</title><addtitle>LANGMUIR</addtitle><addtitle>Langmuir</addtitle><description>The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily controlled by varying the crack template thickness, which establishes a three-way tradeoff between the areal density of cracks, crack width, and spacing between cracks, which in turn determine final grid transmittance, grid sheet resistance, and the semiconductor resistance for a given solar cell. Since CFL uses a lift-off process, an additional constraint is that the metal thickness must be less than 1/3 of the crack template thickness. The transmittance/grid sheet resistance/wire spacing tradeoffs measured in this work were used to calculate solar cell performance: CFL-patterned grids should outperform screen-printed grids for narrow cells (0.5–2 cm wide) and/or cells with high semiconductor sheet resistance (≥100 Ω/sq), making CFL attractive for monolithically integrated thin-film photovoltaic modules.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>cracked film lithography</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>metal grids</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>solar cells</subject><subject>SOLAR ENERGY</subject><subject>Technology</subject><subject>transparent contacts</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1u1DAURi0EosPAGyBksUJCGRz_xM4SRUxBGkQX7Tpy7JsZl4k92E6rvj2uMu0SsbIX59x79X0Iva_Jpia0_qJN2hy130-zixtiCKGyeYFWtaCkEorKl2hFJGeV5A27QG9SuiWEtIy3r9EFo1QKztoV8tvZWz2Bz_qYcBjxTXJ-j7uozW-weOuOE965fAj7qE-HB5wDvtI5Q_T4OmqfTjoWF3fB29lkdwf4J5RR-DI6m_AYIr46hBzuwjFrZ9Jb9Gosi-Dd-V2jm-236-57tft1-aP7uqs0p3WulLaMjDURwKzQelSCMUEbxixtGUjF5Wj50PB2GGg7gIRWNkzRUbTSGgKKrdHHZW5I2fXJuAzmYIL3YHJfN6JVRVijTwt0iuHPDCn3k0sGjiVVCHPqKVNK0ZbLuqB8QU0MKUUY-1N0k44PfU36xzr6Ukf_VEd_rqNoH84b5mEC-yw95V8AtQD3MISx3AnewDNWChOMNILJ8iOyc1lnF3wXZp-L-vn_1UKThX688zbM0Zf4_338Xzwku28</recordid><startdate>20200505</startdate><enddate>20200505</enddate><creator>Muzzillo, Christopher P</creator><creator>Reese, Matthew O</creator><creator>Mansfield, Lorelle M</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6492-0098</orcidid><orcidid>https://orcid.org/0000-0001-9927-5984</orcidid><orcidid>https://orcid.org/0000000264920098</orcidid><orcidid>https://orcid.org/0000000199275984</orcidid><orcidid>https://orcid.org/0000000272064105</orcidid></search><sort><creationdate>20200505</creationdate><title>Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics</title><author>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a421t-8ad30f105e3d5aaf853352633d293e7847fd4b649bb29be7e976382f597dc0e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>cracked film lithography</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>metal grids</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>solar cells</topic><topic>SOLAR ENERGY</topic><topic>Technology</topic><topic>transparent contacts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muzzillo, Christopher P</creatorcontrib><creatorcontrib>Reese, Matthew O</creatorcontrib><creatorcontrib>Mansfield, Lorelle M</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muzzillo, Christopher P</au><au>Reese, Matthew O</au><au>Mansfield, Lorelle M</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics</atitle><jtitle>Langmuir</jtitle><stitle>LANGMUIR</stitle><addtitle>Langmuir</addtitle><date>2020-05-05</date><risdate>2020</risdate><volume>36</volume><issue>17</issue><spage>4630</spage><epage>4636</epage><pages>4630-4636</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily controlled by varying the crack template thickness, which establishes a three-way tradeoff between the areal density of cracks, crack width, and spacing between cracks, which in turn determine final grid transmittance, grid sheet resistance, and the semiconductor resistance for a given solar cell. Since CFL uses a lift-off process, an additional constraint is that the metal thickness must be less than 1/3 of the crack template thickness. The transmittance/grid sheet resistance/wire spacing tradeoffs measured in this work were used to calculate solar cell performance: CFL-patterned grids should outperform screen-printed grids for narrow cells (0.5–2 cm wide) and/or cells with high semiconductor sheet resistance (≥100 Ω/sq), making CFL attractive for monolithically integrated thin-film photovoltaic modules.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32275439</pmid><doi>10.1021/acs.langmuir.0c00276</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6492-0098</orcidid><orcidid>https://orcid.org/0000-0001-9927-5984</orcidid><orcidid>https://orcid.org/0000000264920098</orcidid><orcidid>https://orcid.org/0000000199275984</orcidid><orcidid>https://orcid.org/0000000272064105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2020-05, Vol.36 (17), p.4630-4636
issn 0743-7463
1520-5827
language eng
recordid cdi_pubmed_primary_32275439
source ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
cracked film lithography
Materials Science
Materials Science, Multidisciplinary
metal grids
Physical Sciences
Science & Technology
solar cells
SOLAR ENERGY
Technology
transparent contacts
title Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamentals%20of%20Using%20Cracked%20Film%20Lithography%20to%20Pattern%20Transparent%20Conductive%20Metal%20Grids%20for%20Photovoltaics&rft.jtitle=Langmuir&rft.au=Muzzillo,%20Christopher%20P&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-05-05&rft.volume=36&rft.issue=17&rft.spage=4630&rft.epage=4636&rft.pages=4630-4636&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.0c00276&rft_dat=%3Cproquest_pubme%3E2388829471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388829471&rft_id=info:pmid/32275439&rfr_iscdi=true