Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics
The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily contr...
Gespeichert in:
Veröffentlicht in: | Langmuir 2020-05, Vol.36 (17), p.4630-4636 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4636 |
---|---|
container_issue | 17 |
container_start_page | 4630 |
container_title | Langmuir |
container_volume | 36 |
creator | Muzzillo, Christopher P Reese, Matthew O Mansfield, Lorelle M |
description | The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily controlled by varying the crack template thickness, which establishes a three-way tradeoff between the areal density of cracks, crack width, and spacing between cracks, which in turn determine final grid transmittance, grid sheet resistance, and the semiconductor resistance for a given solar cell. Since CFL uses a lift-off process, an additional constraint is that the metal thickness must be less than 1/3 of the crack template thickness. The transmittance/grid sheet resistance/wire spacing tradeoffs measured in this work were used to calculate solar cell performance: CFL-patterned grids should outperform screen-printed grids for narrow cells (0.5–2 cm wide) and/or cells with high semiconductor sheet resistance (≥100 Ω/sq), making CFL attractive for monolithically integrated thin-film photovoltaic modules. |
doi_str_mv | 10.1021/acs.langmuir.0c00276 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32275439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388829471</sourcerecordid><originalsourceid>FETCH-LOGICAL-a421t-8ad30f105e3d5aaf853352633d293e7847fd4b649bb29be7e976382f597dc0e83</originalsourceid><addsrcrecordid>eNqNkc1u1DAURi0EosPAGyBksUJCGRz_xM4SRUxBGkQX7Tpy7JsZl4k92E6rvj2uMu0SsbIX59x79X0Iva_Jpia0_qJN2hy130-zixtiCKGyeYFWtaCkEorKl2hFJGeV5A27QG9SuiWEtIy3r9EFo1QKztoV8tvZWz2Bz_qYcBjxTXJ-j7uozW-weOuOE965fAj7qE-HB5wDvtI5Q_T4OmqfTjoWF3fB29lkdwf4J5RR-DI6m_AYIr46hBzuwjFrZ9Jb9Gosi-Dd-V2jm-236-57tft1-aP7uqs0p3WulLaMjDURwKzQelSCMUEbxixtGUjF5Wj50PB2GGg7gIRWNkzRUbTSGgKKrdHHZW5I2fXJuAzmYIL3YHJfN6JVRVijTwt0iuHPDCn3k0sGjiVVCHPqKVNK0ZbLuqB8QU0MKUUY-1N0k44PfU36xzr6Ukf_VEd_rqNoH84b5mEC-yw95V8AtQD3MISx3AnewDNWChOMNILJ8iOyc1lnF3wXZp-L-vn_1UKThX688zbM0Zf4_338Xzwku28</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388829471</pqid></control><display><type>article</type><title>Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M</creator><creatorcontrib>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily controlled by varying the crack template thickness, which establishes a three-way tradeoff between the areal density of cracks, crack width, and spacing between cracks, which in turn determine final grid transmittance, grid sheet resistance, and the semiconductor resistance for a given solar cell. Since CFL uses a lift-off process, an additional constraint is that the metal thickness must be less than 1/3 of the crack template thickness. The transmittance/grid sheet resistance/wire spacing tradeoffs measured in this work were used to calculate solar cell performance: CFL-patterned grids should outperform screen-printed grids for narrow cells (0.5–2 cm wide) and/or cells with high semiconductor sheet resistance (≥100 Ω/sq), making CFL attractive for monolithically integrated thin-film photovoltaic modules.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.0c00276</identifier><identifier>PMID: 32275439</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; cracked film lithography ; Materials Science ; Materials Science, Multidisciplinary ; metal grids ; Physical Sciences ; Science & Technology ; solar cells ; SOLAR ENERGY ; Technology ; transparent contacts</subject><ispartof>Langmuir, 2020-05, Vol.36 (17), p.4630-4636</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000530653700007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a421t-8ad30f105e3d5aaf853352633d293e7847fd4b649bb29be7e976382f597dc0e83</citedby><cites>FETCH-LOGICAL-a421t-8ad30f105e3d5aaf853352633d293e7847fd4b649bb29be7e976382f597dc0e83</cites><orcidid>0000-0002-6492-0098 ; 0000-0001-9927-5984 ; 0000000264920098 ; 0000000199275984 ; 0000000272064105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.0c00276$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c00276$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27080,27928,27929,28252,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32275439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1659876$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Muzzillo, Christopher P</creatorcontrib><creatorcontrib>Reese, Matthew O</creatorcontrib><creatorcontrib>Mansfield, Lorelle M</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics</title><title>Langmuir</title><addtitle>LANGMUIR</addtitle><addtitle>Langmuir</addtitle><description>The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily controlled by varying the crack template thickness, which establishes a three-way tradeoff between the areal density of cracks, crack width, and spacing between cracks, which in turn determine final grid transmittance, grid sheet resistance, and the semiconductor resistance for a given solar cell. Since CFL uses a lift-off process, an additional constraint is that the metal thickness must be less than 1/3 of the crack template thickness. The transmittance/grid sheet resistance/wire spacing tradeoffs measured in this work were used to calculate solar cell performance: CFL-patterned grids should outperform screen-printed grids for narrow cells (0.5–2 cm wide) and/or cells with high semiconductor sheet resistance (≥100 Ω/sq), making CFL attractive for monolithically integrated thin-film photovoltaic modules.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>cracked film lithography</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>metal grids</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>solar cells</subject><subject>SOLAR ENERGY</subject><subject>Technology</subject><subject>transparent contacts</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1u1DAURi0EosPAGyBksUJCGRz_xM4SRUxBGkQX7Tpy7JsZl4k92E6rvj2uMu0SsbIX59x79X0Iva_Jpia0_qJN2hy130-zixtiCKGyeYFWtaCkEorKl2hFJGeV5A27QG9SuiWEtIy3r9EFo1QKztoV8tvZWz2Bz_qYcBjxTXJ-j7uozW-weOuOE965fAj7qE-HB5wDvtI5Q_T4OmqfTjoWF3fB29lkdwf4J5RR-DI6m_AYIr46hBzuwjFrZ9Jb9Gosi-Dd-V2jm-236-57tft1-aP7uqs0p3WulLaMjDURwKzQelSCMUEbxixtGUjF5Wj50PB2GGg7gIRWNkzRUbTSGgKKrdHHZW5I2fXJuAzmYIL3YHJfN6JVRVijTwt0iuHPDCn3k0sGjiVVCHPqKVNK0ZbLuqB8QU0MKUUY-1N0k44PfU36xzr6Ukf_VEd_rqNoH84b5mEC-yw95V8AtQD3MISx3AnewDNWChOMNILJ8iOyc1lnF3wXZp-L-vn_1UKThX688zbM0Zf4_338Xzwku28</recordid><startdate>20200505</startdate><enddate>20200505</enddate><creator>Muzzillo, Christopher P</creator><creator>Reese, Matthew O</creator><creator>Mansfield, Lorelle M</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6492-0098</orcidid><orcidid>https://orcid.org/0000-0001-9927-5984</orcidid><orcidid>https://orcid.org/0000000264920098</orcidid><orcidid>https://orcid.org/0000000199275984</orcidid><orcidid>https://orcid.org/0000000272064105</orcidid></search><sort><creationdate>20200505</creationdate><title>Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics</title><author>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a421t-8ad30f105e3d5aaf853352633d293e7847fd4b649bb29be7e976382f597dc0e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>cracked film lithography</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>metal grids</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>solar cells</topic><topic>SOLAR ENERGY</topic><topic>Technology</topic><topic>transparent contacts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muzzillo, Christopher P</creatorcontrib><creatorcontrib>Reese, Matthew O</creatorcontrib><creatorcontrib>Mansfield, Lorelle M</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muzzillo, Christopher P</au><au>Reese, Matthew O</au><au>Mansfield, Lorelle M</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics</atitle><jtitle>Langmuir</jtitle><stitle>LANGMUIR</stitle><addtitle>Langmuir</addtitle><date>2020-05-05</date><risdate>2020</risdate><volume>36</volume><issue>17</issue><spage>4630</spage><epage>4636</epage><pages>4630-4636</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily controlled by varying the crack template thickness, which establishes a three-way tradeoff between the areal density of cracks, crack width, and spacing between cracks, which in turn determine final grid transmittance, grid sheet resistance, and the semiconductor resistance for a given solar cell. Since CFL uses a lift-off process, an additional constraint is that the metal thickness must be less than 1/3 of the crack template thickness. The transmittance/grid sheet resistance/wire spacing tradeoffs measured in this work were used to calculate solar cell performance: CFL-patterned grids should outperform screen-printed grids for narrow cells (0.5–2 cm wide) and/or cells with high semiconductor sheet resistance (≥100 Ω/sq), making CFL attractive for monolithically integrated thin-film photovoltaic modules.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32275439</pmid><doi>10.1021/acs.langmuir.0c00276</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6492-0098</orcidid><orcidid>https://orcid.org/0000-0001-9927-5984</orcidid><orcidid>https://orcid.org/0000000264920098</orcidid><orcidid>https://orcid.org/0000000199275984</orcidid><orcidid>https://orcid.org/0000000272064105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2020-05, Vol.36 (17), p.4630-4636 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_pubmed_primary_32275439 |
source | ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Chemistry Chemistry, Multidisciplinary Chemistry, Physical cracked film lithography Materials Science Materials Science, Multidisciplinary metal grids Physical Sciences Science & Technology solar cells SOLAR ENERGY Technology transparent contacts |
title | Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamentals%20of%20Using%20Cracked%20Film%20Lithography%20to%20Pattern%20Transparent%20Conductive%20Metal%20Grids%20for%20Photovoltaics&rft.jtitle=Langmuir&rft.au=Muzzillo,%20Christopher%20P&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-05-05&rft.volume=36&rft.issue=17&rft.spage=4630&rft.epage=4636&rft.pages=4630-4636&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.0c00276&rft_dat=%3Cproquest_pubme%3E2388829471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388829471&rft_id=info:pmid/32275439&rfr_iscdi=true |