Biochemical Characterization of Yeast Xrn1
Messenger RNA degradation is an important component of overall gene expression. During the final step of eukaryotic mRNA degradation, exoribonuclease 1 (Xrn1) carries out 5′ → 3′ processive, hydrolytic degradation of RNA molecules using divalent metal ion catalysis. To initiate studies of the 5′ → 3...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2020-04, Vol.59 (15), p.1493-1507 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1507 |
---|---|
container_issue | 15 |
container_start_page | 1493 |
container_title | Biochemistry (Easton) |
container_volume | 59 |
creator | Langeberg, Conner J Welch, William R. W McGuire, John V Ashby, Alison Jackson, Alexander D Chapman, Erich G |
description | Messenger RNA degradation is an important component of overall gene expression. During the final step of eukaryotic mRNA degradation, exoribonuclease 1 (Xrn1) carries out 5′ → 3′ processive, hydrolytic degradation of RNA molecules using divalent metal ion catalysis. To initiate studies of the 5′ → 3′ RNA decay machinery in our lab, we expressed a C-terminally truncated version of Saccharomyces cerevisiae Xrn1 and explored its enzymology using a second-generation, time-resolved fluorescence RNA degradation assay. Using this system, we quantitatively explored Xrn1’s preference for 5′-monophosphorylated RNA substrates, its pH dependence, and the importance of active site mutations in the molecule’s conserved catalytic core. Furthermore, we explore Xrn1’s preference for RNAs containing a 5′ single-stranded region both in an intermolecular hairpin structure and in an RNA–DNA hybrid duplex system. These results both expand and solidify our understanding of Xrn1, a centrally important enzyme whose biochemical properties have implications in numerous RNA degradation and processing pathways. |
doi_str_mv | 10.1021/acs.biochem.9b01035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32251580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387253494</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-8a11cf2900e064f38459366933ead0d29c049a139748e89146dccdbe021b234c3</originalsourceid><addsrcrecordid>eNqNkV9LHDEUxYO06Nb2ExRkH4sy682_mcmL0A5WC4IvFtqnkMnc6UZmJ5rMKPrpzTrbRV_EpxDyOyf3nkPIVwoLCoweGxsXtfN2iauFqoEClztkRiWDTCglP5AZAOQZUznskU8xXqergELskj3OmKSyhBk5_DE5OGu6ebU0wdgBg3s0g_P93Lfzv2jiMP8TevqZfGxNF_HL5twnv3-eXlXn2cXl2a_q-0VmhJBDVhpKbcsUAEIuWl4KqXieK87RNNAwZUEoQ7kqRImloiJvrG1qTCvVjAvL98nJ5Hsz1itsLPZDMJ2-CW5lwoP2xunXL71b6n_-ThdFCVQWyeDbxiD42xHjoFcuWuw606Mfo2a8LJjkQomE8gm1wccYsN1-Q0GvU9YpZb1JWW9STqqDlxNuNf9jTcDRBNxj7dtoHfYWt1jqQbKiEFTCuqFEl--nKzc8d1P5sR-S9HiSrse89mPoUzNvzv4EyrarBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387253494</pqid></control><display><type>article</type><title>Biochemical Characterization of Yeast Xrn1</title><source>MEDLINE</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Langeberg, Conner J ; Welch, William R. W ; McGuire, John V ; Ashby, Alison ; Jackson, Alexander D ; Chapman, Erich G</creator><creatorcontrib>Langeberg, Conner J ; Welch, William R. W ; McGuire, John V ; Ashby, Alison ; Jackson, Alexander D ; Chapman, Erich G</creatorcontrib><description>Messenger RNA degradation is an important component of overall gene expression. During the final step of eukaryotic mRNA degradation, exoribonuclease 1 (Xrn1) carries out 5′ → 3′ processive, hydrolytic degradation of RNA molecules using divalent metal ion catalysis. To initiate studies of the 5′ → 3′ RNA decay machinery in our lab, we expressed a C-terminally truncated version of Saccharomyces cerevisiae Xrn1 and explored its enzymology using a second-generation, time-resolved fluorescence RNA degradation assay. Using this system, we quantitatively explored Xrn1’s preference for 5′-monophosphorylated RNA substrates, its pH dependence, and the importance of active site mutations in the molecule’s conserved catalytic core. Furthermore, we explore Xrn1’s preference for RNAs containing a 5′ single-stranded region both in an intermolecular hairpin structure and in an RNA–DNA hybrid duplex system. These results both expand and solidify our understanding of Xrn1, a centrally important enzyme whose biochemical properties have implications in numerous RNA degradation and processing pathways.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.9b01035</identifier><identifier>PMID: 32251580</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Biochemistry & Molecular Biology ; Exoribonucleases - chemistry ; Exoribonucleases - genetics ; Exoribonucleases - metabolism ; Hydrogen-Ion Concentration ; Life Sciences & Biomedicine ; Models, Molecular ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Science & Technology</subject><ispartof>Biochemistry (Easton), 2020-04, Vol.59 (15), p.1493-1507</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000527741500006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a445t-8a11cf2900e064f38459366933ead0d29c049a139748e89146dccdbe021b234c3</citedby><cites>FETCH-LOGICAL-a445t-8a11cf2900e064f38459366933ead0d29c049a139748e89146dccdbe021b234c3</cites><orcidid>0000-0002-5609-3758 ; 0000-0002-5321-9095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.9b01035$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.9b01035$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,28253,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32251580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Langeberg, Conner J</creatorcontrib><creatorcontrib>Welch, William R. W</creatorcontrib><creatorcontrib>McGuire, John V</creatorcontrib><creatorcontrib>Ashby, Alison</creatorcontrib><creatorcontrib>Jackson, Alexander D</creatorcontrib><creatorcontrib>Chapman, Erich G</creatorcontrib><title>Biochemical Characterization of Yeast Xrn1</title><title>Biochemistry (Easton)</title><addtitle>BIOCHEMISTRY-US</addtitle><addtitle>Biochemistry</addtitle><description>Messenger RNA degradation is an important component of overall gene expression. During the final step of eukaryotic mRNA degradation, exoribonuclease 1 (Xrn1) carries out 5′ → 3′ processive, hydrolytic degradation of RNA molecules using divalent metal ion catalysis. To initiate studies of the 5′ → 3′ RNA decay machinery in our lab, we expressed a C-terminally truncated version of Saccharomyces cerevisiae Xrn1 and explored its enzymology using a second-generation, time-resolved fluorescence RNA degradation assay. Using this system, we quantitatively explored Xrn1’s preference for 5′-monophosphorylated RNA substrates, its pH dependence, and the importance of active site mutations in the molecule’s conserved catalytic core. Furthermore, we explore Xrn1’s preference for RNAs containing a 5′ single-stranded region both in an intermolecular hairpin structure and in an RNA–DNA hybrid duplex system. These results both expand and solidify our understanding of Xrn1, a centrally important enzyme whose biochemical properties have implications in numerous RNA degradation and processing pathways.</description><subject>Biochemistry & Molecular Biology</subject><subject>Exoribonucleases - chemistry</subject><subject>Exoribonucleases - genetics</subject><subject>Exoribonucleases - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Life Sciences & Biomedicine</subject><subject>Models, Molecular</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science & Technology</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkV9LHDEUxYO06Nb2ExRkH4sy682_mcmL0A5WC4IvFtqnkMnc6UZmJ5rMKPrpzTrbRV_EpxDyOyf3nkPIVwoLCoweGxsXtfN2iauFqoEClztkRiWDTCglP5AZAOQZUznskU8xXqergELskj3OmKSyhBk5_DE5OGu6ebU0wdgBg3s0g_P93Lfzv2jiMP8TevqZfGxNF_HL5twnv3-eXlXn2cXl2a_q-0VmhJBDVhpKbcsUAEIuWl4KqXieK87RNNAwZUEoQ7kqRImloiJvrG1qTCvVjAvL98nJ5Hsz1itsLPZDMJ2-CW5lwoP2xunXL71b6n_-ThdFCVQWyeDbxiD42xHjoFcuWuw606Mfo2a8LJjkQomE8gm1wccYsN1-Q0GvU9YpZb1JWW9STqqDlxNuNf9jTcDRBNxj7dtoHfYWt1jqQbKiEFTCuqFEl--nKzc8d1P5sR-S9HiSrse89mPoUzNvzv4EyrarBg</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>Langeberg, Conner J</creator><creator>Welch, William R. W</creator><creator>McGuire, John V</creator><creator>Ashby, Alison</creator><creator>Jackson, Alexander D</creator><creator>Chapman, Erich G</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5609-3758</orcidid><orcidid>https://orcid.org/0000-0002-5321-9095</orcidid></search><sort><creationdate>20200421</creationdate><title>Biochemical Characterization of Yeast Xrn1</title><author>Langeberg, Conner J ; Welch, William R. W ; McGuire, John V ; Ashby, Alison ; Jackson, Alexander D ; Chapman, Erich G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-8a11cf2900e064f38459366933ead0d29c049a139748e89146dccdbe021b234c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry & Molecular Biology</topic><topic>Exoribonucleases - chemistry</topic><topic>Exoribonucleases - genetics</topic><topic>Exoribonucleases - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Life Sciences & Biomedicine</topic><topic>Models, Molecular</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langeberg, Conner J</creatorcontrib><creatorcontrib>Welch, William R. W</creatorcontrib><creatorcontrib>McGuire, John V</creatorcontrib><creatorcontrib>Ashby, Alison</creatorcontrib><creatorcontrib>Jackson, Alexander D</creatorcontrib><creatorcontrib>Chapman, Erich G</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langeberg, Conner J</au><au>Welch, William R. W</au><au>McGuire, John V</au><au>Ashby, Alison</au><au>Jackson, Alexander D</au><au>Chapman, Erich G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical Characterization of Yeast Xrn1</atitle><jtitle>Biochemistry (Easton)</jtitle><stitle>BIOCHEMISTRY-US</stitle><addtitle>Biochemistry</addtitle><date>2020-04-21</date><risdate>2020</risdate><volume>59</volume><issue>15</issue><spage>1493</spage><epage>1507</epage><pages>1493-1507</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Messenger RNA degradation is an important component of overall gene expression. During the final step of eukaryotic mRNA degradation, exoribonuclease 1 (Xrn1) carries out 5′ → 3′ processive, hydrolytic degradation of RNA molecules using divalent metal ion catalysis. To initiate studies of the 5′ → 3′ RNA decay machinery in our lab, we expressed a C-terminally truncated version of Saccharomyces cerevisiae Xrn1 and explored its enzymology using a second-generation, time-resolved fluorescence RNA degradation assay. Using this system, we quantitatively explored Xrn1’s preference for 5′-monophosphorylated RNA substrates, its pH dependence, and the importance of active site mutations in the molecule’s conserved catalytic core. Furthermore, we explore Xrn1’s preference for RNAs containing a 5′ single-stranded region both in an intermolecular hairpin structure and in an RNA–DNA hybrid duplex system. These results both expand and solidify our understanding of Xrn1, a centrally important enzyme whose biochemical properties have implications in numerous RNA degradation and processing pathways.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32251580</pmid><doi>10.1021/acs.biochem.9b01035</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5609-3758</orcidid><orcidid>https://orcid.org/0000-0002-5321-9095</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2020-04, Vol.59 (15), p.1493-1507 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_pubmed_primary_32251580 |
source | MEDLINE; ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Biochemistry & Molecular Biology Exoribonucleases - chemistry Exoribonucleases - genetics Exoribonucleases - metabolism Hydrogen-Ion Concentration Life Sciences & Biomedicine Models, Molecular Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Science & Technology |
title | Biochemical Characterization of Yeast Xrn1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20Characterization%20of%20Yeast%20Xrn1&rft.jtitle=Biochemistry%20(Easton)&rft.au=Langeberg,%20Conner%20J&rft.date=2020-04-21&rft.volume=59&rft.issue=15&rft.spage=1493&rft.epage=1507&rft.pages=1493-1507&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.9b01035&rft_dat=%3Cproquest_pubme%3E2387253494%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387253494&rft_id=info:pmid/32251580&rfr_iscdi=true |