Pressure Induced Stability Enhancement of Cubic Nanostructured CeO 2
Ceria (CeO )-based materials are widely used in applications such as catalysis, fuel cells and oxygen sensors. Its cubic fluorite structure with a cell parameter similar to that of silicon makes it a candidate for implementation in electronic devices. This structure is stable in a wide temperature a...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2020-03, Vol.10 (4) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 10 |
creator | Paulin, Mariano Andrés Garbarino, Gaston Leyva, Ana Gabriela Mezouar, Mohamed Sacanell, Joaquin |
description | Ceria (CeO
)-based materials are widely used in applications such as catalysis, fuel cells and oxygen sensors. Its cubic fluorite structure with a cell parameter similar to that of silicon makes it a candidate for implementation in electronic devices. This structure is stable in a wide temperature and pressure range, with a reported structural phase transition to an orthorhombic phase. In this work, we study the structure of CeO
under hydrostatic pressures up to 110 GPa simultaneously for the nanometer- and micrometer-sized powders as well as for a single crystal, using He as the pressure-transmitting medium. The first-order transition is clearly present for the micrometer-sized and single-crystal samples, while, for the nanometer grain size powder, it is suppressed up to at least 110 GPa. We show that the stacking fault density increases by two orders of magnitude in the studied pressure range and could act as an internal constraint, avoiding the nucleation of the high-pressure phase. |
doi_str_mv | 10.3390/nano10040650 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_32244429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32244429</sourcerecordid><originalsourceid>FETCH-pubmed_primary_322444293</originalsourceid><addsrcrecordid>eNqFjb0OgjAAhBujEaNszqYvgJa2qJ0Ro4ua6E4KLbEGCunPwNvLoImbt9wN3-UDYBmjNSEMbTTXbYwQRdsEjcAMox2LKGPx-GcHILT2hYawmOwTMgUBwZhSitkMHG5GWuuNhGctfCkFvDteqFq5Hmb6yXUpG6kdbCuY-kKV8DIYrTO-dMNJwFReIV6AScVrK8NPz8HqmD3SU9T5opEi74xquOnzr5b8Bd6Sdz7M</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pressure Induced Stability Enhancement of Cubic Nanostructured CeO 2</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Paulin, Mariano Andrés ; Garbarino, Gaston ; Leyva, Ana Gabriela ; Mezouar, Mohamed ; Sacanell, Joaquin</creator><creatorcontrib>Paulin, Mariano Andrés ; Garbarino, Gaston ; Leyva, Ana Gabriela ; Mezouar, Mohamed ; Sacanell, Joaquin</creatorcontrib><description>Ceria (CeO
)-based materials are widely used in applications such as catalysis, fuel cells and oxygen sensors. Its cubic fluorite structure with a cell parameter similar to that of silicon makes it a candidate for implementation in electronic devices. This structure is stable in a wide temperature and pressure range, with a reported structural phase transition to an orthorhombic phase. In this work, we study the structure of CeO
under hydrostatic pressures up to 110 GPa simultaneously for the nanometer- and micrometer-sized powders as well as for a single crystal, using He as the pressure-transmitting medium. The first-order transition is clearly present for the micrometer-sized and single-crystal samples, while, for the nanometer grain size powder, it is suppressed up to at least 110 GPa. We show that the stacking fault density increases by two orders of magnitude in the studied pressure range and could act as an internal constraint, avoiding the nucleation of the high-pressure phase.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10040650</identifier><identifier>PMID: 32244429</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Nanomaterials (Basel, Switzerland), 2020-03, Vol.10 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4780-9520 ; 0000-0002-3479-2830 ; 0000-0002-8209-8106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32244429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulin, Mariano Andrés</creatorcontrib><creatorcontrib>Garbarino, Gaston</creatorcontrib><creatorcontrib>Leyva, Ana Gabriela</creatorcontrib><creatorcontrib>Mezouar, Mohamed</creatorcontrib><creatorcontrib>Sacanell, Joaquin</creatorcontrib><title>Pressure Induced Stability Enhancement of Cubic Nanostructured CeO 2</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Ceria (CeO
)-based materials are widely used in applications such as catalysis, fuel cells and oxygen sensors. Its cubic fluorite structure with a cell parameter similar to that of silicon makes it a candidate for implementation in electronic devices. This structure is stable in a wide temperature and pressure range, with a reported structural phase transition to an orthorhombic phase. In this work, we study the structure of CeO
under hydrostatic pressures up to 110 GPa simultaneously for the nanometer- and micrometer-sized powders as well as for a single crystal, using He as the pressure-transmitting medium. The first-order transition is clearly present for the micrometer-sized and single-crystal samples, while, for the nanometer grain size powder, it is suppressed up to at least 110 GPa. We show that the stacking fault density increases by two orders of magnitude in the studied pressure range and could act as an internal constraint, avoiding the nucleation of the high-pressure phase.</description><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFjb0OgjAAhBujEaNszqYvgJa2qJ0Ro4ua6E4KLbEGCunPwNvLoImbt9wN3-UDYBmjNSEMbTTXbYwQRdsEjcAMox2LKGPx-GcHILT2hYawmOwTMgUBwZhSitkMHG5GWuuNhGctfCkFvDteqFq5Hmb6yXUpG6kdbCuY-kKV8DIYrTO-dMNJwFReIV6AScVrK8NPz8HqmD3SU9T5opEi74xquOnzr5b8Bd6Sdz7M</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Paulin, Mariano Andrés</creator><creator>Garbarino, Gaston</creator><creator>Leyva, Ana Gabriela</creator><creator>Mezouar, Mohamed</creator><creator>Sacanell, Joaquin</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0003-4780-9520</orcidid><orcidid>https://orcid.org/0000-0002-3479-2830</orcidid><orcidid>https://orcid.org/0000-0002-8209-8106</orcidid></search><sort><creationdate>20200331</creationdate><title>Pressure Induced Stability Enhancement of Cubic Nanostructured CeO 2</title><author>Paulin, Mariano Andrés ; Garbarino, Gaston ; Leyva, Ana Gabriela ; Mezouar, Mohamed ; Sacanell, Joaquin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_322444293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulin, Mariano Andrés</creatorcontrib><creatorcontrib>Garbarino, Gaston</creatorcontrib><creatorcontrib>Leyva, Ana Gabriela</creatorcontrib><creatorcontrib>Mezouar, Mohamed</creatorcontrib><creatorcontrib>Sacanell, Joaquin</creatorcontrib><collection>PubMed</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulin, Mariano Andrés</au><au>Garbarino, Gaston</au><au>Leyva, Ana Gabriela</au><au>Mezouar, Mohamed</au><au>Sacanell, Joaquin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure Induced Stability Enhancement of Cubic Nanostructured CeO 2</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2020-03-31</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Ceria (CeO
)-based materials are widely used in applications such as catalysis, fuel cells and oxygen sensors. Its cubic fluorite structure with a cell parameter similar to that of silicon makes it a candidate for implementation in electronic devices. This structure is stable in a wide temperature and pressure range, with a reported structural phase transition to an orthorhombic phase. In this work, we study the structure of CeO
under hydrostatic pressures up to 110 GPa simultaneously for the nanometer- and micrometer-sized powders as well as for a single crystal, using He as the pressure-transmitting medium. The first-order transition is clearly present for the micrometer-sized and single-crystal samples, while, for the nanometer grain size powder, it is suppressed up to at least 110 GPa. We show that the stacking fault density increases by two orders of magnitude in the studied pressure range and could act as an internal constraint, avoiding the nucleation of the high-pressure phase.</abstract><cop>Switzerland</cop><pmid>32244429</pmid><doi>10.3390/nano10040650</doi><orcidid>https://orcid.org/0000-0003-4780-9520</orcidid><orcidid>https://orcid.org/0000-0002-3479-2830</orcidid><orcidid>https://orcid.org/0000-0002-8209-8106</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2020-03, Vol.10 (4) |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_pubmed_primary_32244429 |
source | MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
title | Pressure Induced Stability Enhancement of Cubic Nanostructured CeO 2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure%20Induced%20Stability%20Enhancement%20of%20Cubic%20Nanostructured%20CeO%202&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Paulin,%20Mariano%20Andr%C3%A9s&rft.date=2020-03-31&rft.volume=10&rft.issue=4&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10040650&rft_dat=%3Cpubmed%3E32244429%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32244429&rfr_iscdi=true |