Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing

This paper introduces the concept of continuous chaotic printing, i.e. the use of chaotic flows for deterministic and continuous extrusion of fibers with internal multilayered micro- or nanostructures. Two free-flowing materials are coextruded through a printhead containing a miniaturized Kenics sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biofabrication 2020-07, Vol.12 (3), p.35023
Hauptverfasser: Chávez-Madero, Carolina, de León-Derby, María Díaz, Samandari, Mohamadmahdi, Ceballos-González, Carlos Fernando, Bolívar-Monsalve, Edna Johana, Mendoza-Buenrostro, Christian, Holmberg, Sunshine, Garza-Flores, Norma Alicia, Almajhadi, Mohammad Ali, González-Gamboa, Ivonne, Yee-de León, Juan Felipe, Martínez-Chapa, Sergio O., Rodríguez, Ciro A., Wickramasinghe, Hemantha Kumar, Madou, Marc, Dean, David, Khademhosseini, Ali, Zhang, Yu Shrike, Alvarez, Mario Moisés, Trujillo-de Santiago, Grissel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35023
container_title Biofabrication
container_volume 12
creator Chávez-Madero, Carolina
de León-Derby, María Díaz
Samandari, Mohamadmahdi
Ceballos-González, Carlos Fernando
Bolívar-Monsalve, Edna Johana
Mendoza-Buenrostro, Christian
Holmberg, Sunshine
Garza-Flores, Norma Alicia
Almajhadi, Mohammad Ali
González-Gamboa, Ivonne
Yee-de León, Juan Felipe
Martínez-Chapa, Sergio O.
Rodríguez, Ciro A.
Wickramasinghe, Hemantha Kumar
Madou, Marc
Dean, David
Khademhosseini, Ali
Zhang, Yu Shrike
Alvarez, Mario Moisés
Trujillo-de Santiago, Grissel
description This paper introduces the concept of continuous chaotic printing, i.e. the use of chaotic flows for deterministic and continuous extrusion of fibers with internal multilayered micro- or nanostructures. Two free-flowing materials are coextruded through a printhead containing a miniaturized Kenics static mixer (KSM) composed of multiple helicoidal elements. This produces a fiber with a well-defined internal multilayer microarchitecture at high-throughput (>1.0 m min−1). The number of mixing elements and the printhead diameter determine the number and thickness of the internal lamellae, which are generated according to successive bifurcations that yield a vast amount of inter-material surface area (∼102 cm2 cm−3) at high resolution (∼10 µm). This creates structures with extremely high surface area to volume ratio (SAV). Comparison of experimental and computational results demonstrates that continuous chaotic 3D printing is a robust process with predictable output. In an exciting new development, we demonstrate a method for scaling down these microstructures by 3 orders of magnitude, to the nanoscale level (∼150 nm), by feeding the output of a continuous chaotic 3D printhead into an electrospinner. The simplicity and high resolution of continuous chaotic printing strongly supports its potential use in novel applications, including-but not limited to-bioprinting of multi-scale layered biological structures such as bacterial communities, living tissues composed of organized multiple mammalian cell types, and fabrication of smart multi-material and multilayered constructs for biomedical applications.
doi_str_mv 10.1088/1758-5090/ab84cc
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmed_primary_32224513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32224513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-9da5b8a129a5612c7deb49d4bf696efd1e076a5ffd68c2857f99a7a576d890023</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwMyFPTITaTpw4bAjxkpBY6Gw5fjSu2jjyA4nfwJ_GpdAJJl8dneNz7wfAOUbXGDE2xw1lBUUtmouOVVIegOleOtzPjEzASQgrhGpKa3wMJiUhpKK4nILPRbDDEspeuGglFOpdy2jdAI3z0Ahp1xr2dtkXsfcuLfsxxSx33krxbXMGOq-01wpu0jratfjQHm6s9K6AYlBwEIML0ScZk9fhBko3RDskl8K-dPR2qy1PwZER66DPft4ZWDzcv909FS-vj893ty-FrJomFq0StGMCk1bka4hslO6qVlWdqdtaG4U1ampBjVE1k4TRxrStaARtasVahEg5A2j3b14yBK8NzxtshP_gGPEtV74Fx7cQ-Y5rjlzsImPqNlrtA78gs-FyZ7Bu5CuX_JAv4J3hmPCSo5LmXj4qk41Xfxj_Lf4CTFOTPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chávez-Madero, Carolina ; de León-Derby, María Díaz ; Samandari, Mohamadmahdi ; Ceballos-González, Carlos Fernando ; Bolívar-Monsalve, Edna Johana ; Mendoza-Buenrostro, Christian ; Holmberg, Sunshine ; Garza-Flores, Norma Alicia ; Almajhadi, Mohammad Ali ; González-Gamboa, Ivonne ; Yee-de León, Juan Felipe ; Martínez-Chapa, Sergio O. ; Rodríguez, Ciro A. ; Wickramasinghe, Hemantha Kumar ; Madou, Marc ; Dean, David ; Khademhosseini, Ali ; Zhang, Yu Shrike ; Alvarez, Mario Moisés ; Trujillo-de Santiago, Grissel</creator><creatorcontrib>Chávez-Madero, Carolina ; de León-Derby, María Díaz ; Samandari, Mohamadmahdi ; Ceballos-González, Carlos Fernando ; Bolívar-Monsalve, Edna Johana ; Mendoza-Buenrostro, Christian ; Holmberg, Sunshine ; Garza-Flores, Norma Alicia ; Almajhadi, Mohammad Ali ; González-Gamboa, Ivonne ; Yee-de León, Juan Felipe ; Martínez-Chapa, Sergio O. ; Rodríguez, Ciro A. ; Wickramasinghe, Hemantha Kumar ; Madou, Marc ; Dean, David ; Khademhosseini, Ali ; Zhang, Yu Shrike ; Alvarez, Mario Moisés ; Trujillo-de Santiago, Grissel</creatorcontrib><description>This paper introduces the concept of continuous chaotic printing, i.e. the use of chaotic flows for deterministic and continuous extrusion of fibers with internal multilayered micro- or nanostructures. Two free-flowing materials are coextruded through a printhead containing a miniaturized Kenics static mixer (KSM) composed of multiple helicoidal elements. This produces a fiber with a well-defined internal multilayer microarchitecture at high-throughput (&gt;1.0 m min−1). The number of mixing elements and the printhead diameter determine the number and thickness of the internal lamellae, which are generated according to successive bifurcations that yield a vast amount of inter-material surface area (∼102 cm2 cm−3) at high resolution (∼10 µm). This creates structures with extremely high surface area to volume ratio (SAV). Comparison of experimental and computational results demonstrates that continuous chaotic 3D printing is a robust process with predictable output. In an exciting new development, we demonstrate a method for scaling down these microstructures by 3 orders of magnitude, to the nanoscale level (∼150 nm), by feeding the output of a continuous chaotic 3D printhead into an electrospinner. The simplicity and high resolution of continuous chaotic printing strongly supports its potential use in novel applications, including-but not limited to-bioprinting of multi-scale layered biological structures such as bacterial communities, living tissues composed of organized multiple mammalian cell types, and fabrication of smart multi-material and multilayered constructs for biomedical applications.</description><identifier>ISSN: 1758-5082</identifier><identifier>EISSN: 1758-5090</identifier><identifier>DOI: 10.1088/1758-5090/ab84cc</identifier><identifier>PMID: 32224513</identifier><identifier>CODEN: BIOFCK</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>3D-printing ; bioprinting ; Chaos ; lamellae ; microarchitecture ; multi-material ; multilayered ; nanostructure</subject><ispartof>Biofabrication, 2020-07, Vol.12 (3), p.35023</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-9da5b8a129a5612c7deb49d4bf696efd1e076a5ffd68c2857f99a7a576d890023</citedby><cites>FETCH-LOGICAL-c477t-9da5b8a129a5612c7deb49d4bf696efd1e076a5ffd68c2857f99a7a576d890023</cites><orcidid>0000-0002-9131-5344 ; 0000-0002-2692-1524 ; 0000-0002-1217-3764 ; 0000-0003-2689-1166 ; 0000-0003-4847-3117 ; 0000-0002-0045-0808 ; 0000-0003-2289-4239 ; 0000-0001-9230-4607 ; 0000-0001-6403-7302 ; 0000-0003-2509-0025 ; 0000-0001-6322-8852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1758-5090/ab84cc/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32224513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chávez-Madero, Carolina</creatorcontrib><creatorcontrib>de León-Derby, María Díaz</creatorcontrib><creatorcontrib>Samandari, Mohamadmahdi</creatorcontrib><creatorcontrib>Ceballos-González, Carlos Fernando</creatorcontrib><creatorcontrib>Bolívar-Monsalve, Edna Johana</creatorcontrib><creatorcontrib>Mendoza-Buenrostro, Christian</creatorcontrib><creatorcontrib>Holmberg, Sunshine</creatorcontrib><creatorcontrib>Garza-Flores, Norma Alicia</creatorcontrib><creatorcontrib>Almajhadi, Mohammad Ali</creatorcontrib><creatorcontrib>González-Gamboa, Ivonne</creatorcontrib><creatorcontrib>Yee-de León, Juan Felipe</creatorcontrib><creatorcontrib>Martínez-Chapa, Sergio O.</creatorcontrib><creatorcontrib>Rodríguez, Ciro A.</creatorcontrib><creatorcontrib>Wickramasinghe, Hemantha Kumar</creatorcontrib><creatorcontrib>Madou, Marc</creatorcontrib><creatorcontrib>Dean, David</creatorcontrib><creatorcontrib>Khademhosseini, Ali</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><creatorcontrib>Alvarez, Mario Moisés</creatorcontrib><creatorcontrib>Trujillo-de Santiago, Grissel</creatorcontrib><title>Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing</title><title>Biofabrication</title><addtitle>BF</addtitle><addtitle>Biofabrication</addtitle><description>This paper introduces the concept of continuous chaotic printing, i.e. the use of chaotic flows for deterministic and continuous extrusion of fibers with internal multilayered micro- or nanostructures. Two free-flowing materials are coextruded through a printhead containing a miniaturized Kenics static mixer (KSM) composed of multiple helicoidal elements. This produces a fiber with a well-defined internal multilayer microarchitecture at high-throughput (&gt;1.0 m min−1). The number of mixing elements and the printhead diameter determine the number and thickness of the internal lamellae, which are generated according to successive bifurcations that yield a vast amount of inter-material surface area (∼102 cm2 cm−3) at high resolution (∼10 µm). This creates structures with extremely high surface area to volume ratio (SAV). Comparison of experimental and computational results demonstrates that continuous chaotic 3D printing is a robust process with predictable output. In an exciting new development, we demonstrate a method for scaling down these microstructures by 3 orders of magnitude, to the nanoscale level (∼150 nm), by feeding the output of a continuous chaotic 3D printhead into an electrospinner. The simplicity and high resolution of continuous chaotic printing strongly supports its potential use in novel applications, including-but not limited to-bioprinting of multi-scale layered biological structures such as bacterial communities, living tissues composed of organized multiple mammalian cell types, and fabrication of smart multi-material and multilayered constructs for biomedical applications.</description><subject>3D-printing</subject><subject>bioprinting</subject><subject>Chaos</subject><subject>lamellae</subject><subject>microarchitecture</subject><subject>multi-material</subject><subject>multilayered</subject><subject>nanostructure</subject><issn>1758-5082</issn><issn>1758-5090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kDtPwzAUhS0EoqWwMyFPTITaTpw4bAjxkpBY6Gw5fjSu2jjyA4nfwJ_GpdAJJl8dneNz7wfAOUbXGDE2xw1lBUUtmouOVVIegOleOtzPjEzASQgrhGpKa3wMJiUhpKK4nILPRbDDEspeuGglFOpdy2jdAI3z0Ahp1xr2dtkXsfcuLfsxxSx33krxbXMGOq-01wpu0jratfjQHm6s9K6AYlBwEIML0ScZk9fhBko3RDskl8K-dPR2qy1PwZER66DPft4ZWDzcv909FS-vj893ty-FrJomFq0StGMCk1bka4hslO6qVlWdqdtaG4U1ampBjVE1k4TRxrStaARtasVahEg5A2j3b14yBK8NzxtshP_gGPEtV74Fx7cQ-Y5rjlzsImPqNlrtA78gs-FyZ7Bu5CuX_JAv4J3hmPCSo5LmXj4qk41Xfxj_Lf4CTFOTPQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Chávez-Madero, Carolina</creator><creator>de León-Derby, María Díaz</creator><creator>Samandari, Mohamadmahdi</creator><creator>Ceballos-González, Carlos Fernando</creator><creator>Bolívar-Monsalve, Edna Johana</creator><creator>Mendoza-Buenrostro, Christian</creator><creator>Holmberg, Sunshine</creator><creator>Garza-Flores, Norma Alicia</creator><creator>Almajhadi, Mohammad Ali</creator><creator>González-Gamboa, Ivonne</creator><creator>Yee-de León, Juan Felipe</creator><creator>Martínez-Chapa, Sergio O.</creator><creator>Rodríguez, Ciro A.</creator><creator>Wickramasinghe, Hemantha Kumar</creator><creator>Madou, Marc</creator><creator>Dean, David</creator><creator>Khademhosseini, Ali</creator><creator>Zhang, Yu Shrike</creator><creator>Alvarez, Mario Moisés</creator><creator>Trujillo-de Santiago, Grissel</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9131-5344</orcidid><orcidid>https://orcid.org/0000-0002-2692-1524</orcidid><orcidid>https://orcid.org/0000-0002-1217-3764</orcidid><orcidid>https://orcid.org/0000-0003-2689-1166</orcidid><orcidid>https://orcid.org/0000-0003-4847-3117</orcidid><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0003-2289-4239</orcidid><orcidid>https://orcid.org/0000-0001-9230-4607</orcidid><orcidid>https://orcid.org/0000-0001-6403-7302</orcidid><orcidid>https://orcid.org/0000-0003-2509-0025</orcidid><orcidid>https://orcid.org/0000-0001-6322-8852</orcidid></search><sort><creationdate>20200701</creationdate><title>Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing</title><author>Chávez-Madero, Carolina ; de León-Derby, María Díaz ; Samandari, Mohamadmahdi ; Ceballos-González, Carlos Fernando ; Bolívar-Monsalve, Edna Johana ; Mendoza-Buenrostro, Christian ; Holmberg, Sunshine ; Garza-Flores, Norma Alicia ; Almajhadi, Mohammad Ali ; González-Gamboa, Ivonne ; Yee-de León, Juan Felipe ; Martínez-Chapa, Sergio O. ; Rodríguez, Ciro A. ; Wickramasinghe, Hemantha Kumar ; Madou, Marc ; Dean, David ; Khademhosseini, Ali ; Zhang, Yu Shrike ; Alvarez, Mario Moisés ; Trujillo-de Santiago, Grissel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-9da5b8a129a5612c7deb49d4bf696efd1e076a5ffd68c2857f99a7a576d890023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D-printing</topic><topic>bioprinting</topic><topic>Chaos</topic><topic>lamellae</topic><topic>microarchitecture</topic><topic>multi-material</topic><topic>multilayered</topic><topic>nanostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chávez-Madero, Carolina</creatorcontrib><creatorcontrib>de León-Derby, María Díaz</creatorcontrib><creatorcontrib>Samandari, Mohamadmahdi</creatorcontrib><creatorcontrib>Ceballos-González, Carlos Fernando</creatorcontrib><creatorcontrib>Bolívar-Monsalve, Edna Johana</creatorcontrib><creatorcontrib>Mendoza-Buenrostro, Christian</creatorcontrib><creatorcontrib>Holmberg, Sunshine</creatorcontrib><creatorcontrib>Garza-Flores, Norma Alicia</creatorcontrib><creatorcontrib>Almajhadi, Mohammad Ali</creatorcontrib><creatorcontrib>González-Gamboa, Ivonne</creatorcontrib><creatorcontrib>Yee-de León, Juan Felipe</creatorcontrib><creatorcontrib>Martínez-Chapa, Sergio O.</creatorcontrib><creatorcontrib>Rodríguez, Ciro A.</creatorcontrib><creatorcontrib>Wickramasinghe, Hemantha Kumar</creatorcontrib><creatorcontrib>Madou, Marc</creatorcontrib><creatorcontrib>Dean, David</creatorcontrib><creatorcontrib>Khademhosseini, Ali</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><creatorcontrib>Alvarez, Mario Moisés</creatorcontrib><creatorcontrib>Trujillo-de Santiago, Grissel</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biofabrication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chávez-Madero, Carolina</au><au>de León-Derby, María Díaz</au><au>Samandari, Mohamadmahdi</au><au>Ceballos-González, Carlos Fernando</au><au>Bolívar-Monsalve, Edna Johana</au><au>Mendoza-Buenrostro, Christian</au><au>Holmberg, Sunshine</au><au>Garza-Flores, Norma Alicia</au><au>Almajhadi, Mohammad Ali</au><au>González-Gamboa, Ivonne</au><au>Yee-de León, Juan Felipe</au><au>Martínez-Chapa, Sergio O.</au><au>Rodríguez, Ciro A.</au><au>Wickramasinghe, Hemantha Kumar</au><au>Madou, Marc</au><au>Dean, David</au><au>Khademhosseini, Ali</au><au>Zhang, Yu Shrike</au><au>Alvarez, Mario Moisés</au><au>Trujillo-de Santiago, Grissel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing</atitle><jtitle>Biofabrication</jtitle><stitle>BF</stitle><addtitle>Biofabrication</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>35023</spage><pages>35023-</pages><issn>1758-5082</issn><eissn>1758-5090</eissn><coden>BIOFCK</coden><abstract>This paper introduces the concept of continuous chaotic printing, i.e. the use of chaotic flows for deterministic and continuous extrusion of fibers with internal multilayered micro- or nanostructures. Two free-flowing materials are coextruded through a printhead containing a miniaturized Kenics static mixer (KSM) composed of multiple helicoidal elements. This produces a fiber with a well-defined internal multilayer microarchitecture at high-throughput (&gt;1.0 m min−1). The number of mixing elements and the printhead diameter determine the number and thickness of the internal lamellae, which are generated according to successive bifurcations that yield a vast amount of inter-material surface area (∼102 cm2 cm−3) at high resolution (∼10 µm). This creates structures with extremely high surface area to volume ratio (SAV). Comparison of experimental and computational results demonstrates that continuous chaotic 3D printing is a robust process with predictable output. In an exciting new development, we demonstrate a method for scaling down these microstructures by 3 orders of magnitude, to the nanoscale level (∼150 nm), by feeding the output of a continuous chaotic 3D printhead into an electrospinner. The simplicity and high resolution of continuous chaotic printing strongly supports its potential use in novel applications, including-but not limited to-bioprinting of multi-scale layered biological structures such as bacterial communities, living tissues composed of organized multiple mammalian cell types, and fabrication of smart multi-material and multilayered constructs for biomedical applications.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>32224513</pmid><doi>10.1088/1758-5090/ab84cc</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9131-5344</orcidid><orcidid>https://orcid.org/0000-0002-2692-1524</orcidid><orcidid>https://orcid.org/0000-0002-1217-3764</orcidid><orcidid>https://orcid.org/0000-0003-2689-1166</orcidid><orcidid>https://orcid.org/0000-0003-4847-3117</orcidid><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0003-2289-4239</orcidid><orcidid>https://orcid.org/0000-0001-9230-4607</orcidid><orcidid>https://orcid.org/0000-0001-6403-7302</orcidid><orcidid>https://orcid.org/0000-0003-2509-0025</orcidid><orcidid>https://orcid.org/0000-0001-6322-8852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-5082
ispartof Biofabrication, 2020-07, Vol.12 (3), p.35023
issn 1758-5082
1758-5090
language eng
recordid cdi_pubmed_primary_32224513
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 3D-printing
bioprinting
Chaos
lamellae
microarchitecture
multi-material
multilayered
nanostructure
title Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20chaotic%20advection%20for%20facile%20high-throughput%20fabrication%20of%20ordered%20multilayer%20micro-%20and%20nanostructures:%20continuous%20chaotic%20printing&rft.jtitle=Biofabrication&rft.au=Ch%C3%A1vez-Madero,%20Carolina&rft.date=2020-07-01&rft.volume=12&rft.issue=3&rft.spage=35023&rft.pages=35023-&rft.issn=1758-5082&rft.eissn=1758-5090&rft.coden=BIOFCK&rft_id=info:doi/10.1088/1758-5090/ab84cc&rft_dat=%3Cpubmed_cross%3E32224513%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32224513&rfr_iscdi=true