Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process
After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' ( via direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2019-10, Vol.1 (39), p.8946-8954 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8954 |
---|---|
container_issue | 39 |
container_start_page | 8946 |
container_title | Chemical science (Cambridge) |
container_volume | 1 |
creator | Dutta Chowdhury, Abhishek Yarulina, Irina Abou-Hamad, Edy Gurinov, Andrei Gascon, Jorge |
description | After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' (
via
direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites (
i.e.
,
via
the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime.
Surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy has been applied to identify the role of surface-carbene species and elucidating Brønsted-Lewis acid synergy during the zeolite-catalyzed methanol-to-hydrocarbon process. |
doi_str_mv | 10.1039/c9sc02215e |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32190235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379019096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-3c78d35c6c7136e35c3d22684fd75fdd3b63e08d5d7ead7c7173e89543d598873</originalsourceid><addsrcrecordid>eNpdkkuLFDEUhQtRnGGcjXsl4EaE0lRSqVQ2gjbjA1oFR9dFOrnVlaE6KXNTSvXfcuPeP2a0x_aRTQ7cj8NJ7imKuxV9XFGunhiFhjJWCbhRnDJaV2UjuLp51IyeFOeIVzQfzivB5O3ihLNKUcbFafH1co69NkDAD9obsMQuXu-cIX42I-hIpjDq6PY6ueAJhtHZEpNOQN6-eU9wApNiQBOmheAAFsnotkMimX0ev3_zmMCWa_jikGjjLMHFQ9wuxM7R-S1JA5A9ZNPsZ3TS47LPEXaQcpgwlimUw2JjMDpusuOUFSDeKW71ekQ4v77Pio8vLj6sXpXrdy9fr56tS1OzNpXcyNZyYRojK95AVtwy1rR1b6XoreWbhgNtrbAStJWZkhxaJWpuhWpbyc-Kpwffad7swBrwKeqxm6Lb6bh0Qbvu34l3Q7cNnztJm1ayOhs8vDaI4dMMmLqdQwPjqD2EGTvGpaJ5E6rJ6IP_0KswR5-flynKqVA1bTP16ECZ_OcYoT-GqWj3sw7dSl2uftXhIsP3_45_RH8vPwP3DkBEc5z-6RP_AV-fv7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303059408</pqid></control><display><type>article</type><title>Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Dutta Chowdhury, Abhishek ; Yarulina, Irina ; Abou-Hamad, Edy ; Gurinov, Andrei ; Gascon, Jorge</creator><creatorcontrib>Dutta Chowdhury, Abhishek ; Yarulina, Irina ; Abou-Hamad, Edy ; Gurinov, Andrei ; Gascon, Jorge</creatorcontrib><description>After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' (
via
direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites (
i.e.
,
via
the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime.
Surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy has been applied to identify the role of surface-carbene species and elucidating Brønsted-Lewis acid synergy during the zeolite-catalyzed methanol-to-hydrocarbon process.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc02215e</identifier><identifier>PMID: 32190235</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbon ; Catalysts ; Chemistry ; Coupling (molecular) ; Deactivation ; Hydrocarbons ; Lewis acid ; Methanol ; NMR spectroscopy ; Polarization ; Reaction mechanisms ; Reaction products ; Selectivity ; Solid state ; Spectrum analysis ; Zeolites</subject><ispartof>Chemical science (Cambridge), 2019-10, Vol.1 (39), p.8946-8954</ispartof><rights>This journal is © The Royal Society of Chemistry 2019.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-3c78d35c6c7136e35c3d22684fd75fdd3b63e08d5d7ead7c7173e89543d598873</citedby><cites>FETCH-LOGICAL-c428t-3c78d35c6c7136e35c3d22684fd75fdd3b63e08d5d7ead7c7173e89543d598873</cites><orcidid>0000-0002-9551-4535 ; 0000-0001-7558-7123 ; 0000-0002-4121-7375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068724/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068724/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32190235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta Chowdhury, Abhishek</creatorcontrib><creatorcontrib>Yarulina, Irina</creatorcontrib><creatorcontrib>Abou-Hamad, Edy</creatorcontrib><creatorcontrib>Gurinov, Andrei</creatorcontrib><creatorcontrib>Gascon, Jorge</creatorcontrib><title>Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' (
via
direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites (
i.e.
,
via
the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime.
Surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy has been applied to identify the role of surface-carbene species and elucidating Brønsted-Lewis acid synergy during the zeolite-catalyzed methanol-to-hydrocarbon process.</description><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Coupling (molecular)</subject><subject>Deactivation</subject><subject>Hydrocarbons</subject><subject>Lewis acid</subject><subject>Methanol</subject><subject>NMR spectroscopy</subject><subject>Polarization</subject><subject>Reaction mechanisms</subject><subject>Reaction products</subject><subject>Selectivity</subject><subject>Solid state</subject><subject>Spectrum analysis</subject><subject>Zeolites</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkkuLFDEUhQtRnGGcjXsl4EaE0lRSqVQ2gjbjA1oFR9dFOrnVlaE6KXNTSvXfcuPeP2a0x_aRTQ7cj8NJ7imKuxV9XFGunhiFhjJWCbhRnDJaV2UjuLp51IyeFOeIVzQfzivB5O3ihLNKUcbFafH1co69NkDAD9obsMQuXu-cIX42I-hIpjDq6PY6ueAJhtHZEpNOQN6-eU9wApNiQBOmheAAFsnotkMimX0ev3_zmMCWa_jikGjjLMHFQ9wuxM7R-S1JA5A9ZNPsZ3TS47LPEXaQcpgwlimUw2JjMDpusuOUFSDeKW71ekQ4v77Pio8vLj6sXpXrdy9fr56tS1OzNpXcyNZyYRojK95AVtwy1rR1b6XoreWbhgNtrbAStJWZkhxaJWpuhWpbyc-Kpwffad7swBrwKeqxm6Lb6bh0Qbvu34l3Q7cNnztJm1ayOhs8vDaI4dMMmLqdQwPjqD2EGTvGpaJ5E6rJ6IP_0KswR5-flynKqVA1bTP16ECZ_OcYoT-GqWj3sw7dSl2uftXhIsP3_45_RH8vPwP3DkBEc5z-6RP_AV-fv7Y</recordid><startdate>20191021</startdate><enddate>20191021</enddate><creator>Dutta Chowdhury, Abhishek</creator><creator>Yarulina, Irina</creator><creator>Abou-Hamad, Edy</creator><creator>Gurinov, Andrei</creator><creator>Gascon, Jorge</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9551-4535</orcidid><orcidid>https://orcid.org/0000-0001-7558-7123</orcidid><orcidid>https://orcid.org/0000-0002-4121-7375</orcidid></search><sort><creationdate>20191021</creationdate><title>Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process</title><author>Dutta Chowdhury, Abhishek ; Yarulina, Irina ; Abou-Hamad, Edy ; Gurinov, Andrei ; Gascon, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-3c78d35c6c7136e35c3d22684fd75fdd3b63e08d5d7ead7c7173e89543d598873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Coupling (molecular)</topic><topic>Deactivation</topic><topic>Hydrocarbons</topic><topic>Lewis acid</topic><topic>Methanol</topic><topic>NMR spectroscopy</topic><topic>Polarization</topic><topic>Reaction mechanisms</topic><topic>Reaction products</topic><topic>Selectivity</topic><topic>Solid state</topic><topic>Spectrum analysis</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta Chowdhury, Abhishek</creatorcontrib><creatorcontrib>Yarulina, Irina</creatorcontrib><creatorcontrib>Abou-Hamad, Edy</creatorcontrib><creatorcontrib>Gurinov, Andrei</creatorcontrib><creatorcontrib>Gascon, Jorge</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta Chowdhury, Abhishek</au><au>Yarulina, Irina</au><au>Abou-Hamad, Edy</au><au>Gurinov, Andrei</au><au>Gascon, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-10-21</date><risdate>2019</risdate><volume>1</volume><issue>39</issue><spage>8946</spage><epage>8954</epage><pages>8946-8954</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' (
via
direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites (
i.e.
,
via
the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime.
Surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy has been applied to identify the role of surface-carbene species and elucidating Brønsted-Lewis acid synergy during the zeolite-catalyzed methanol-to-hydrocarbon process.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32190235</pmid><doi>10.1039/c9sc02215e</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9551-4535</orcidid><orcidid>https://orcid.org/0000-0001-7558-7123</orcidid><orcidid>https://orcid.org/0000-0002-4121-7375</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2019-10, Vol.1 (39), p.8946-8954 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmed_primary_32190235 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Carbon Catalysts Chemistry Coupling (molecular) Deactivation Hydrocarbons Lewis acid Methanol NMR spectroscopy Polarization Reaction mechanisms Reaction products Selectivity Solid state Spectrum analysis Zeolites |
title | Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20enhanced%20dynamic%20nuclear%20polarization%20solid-state%20NMR%20spectroscopy%20sheds%20light%20on%20Br%C3%B8nsted-Lewis%20acid%20synergy%20during%20the%20zeolite%20catalyzed%20methanol-to-hydrocarbon%20process&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Dutta%20Chowdhury,%20Abhishek&rft.date=2019-10-21&rft.volume=1&rft.issue=39&rft.spage=8946&rft.epage=8954&rft.pages=8946-8954&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc02215e&rft_dat=%3Cproquest_pubme%3E2379019096%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303059408&rft_id=info:pmid/32190235&rfr_iscdi=true |