Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process

After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' ( via direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2019-10, Vol.1 (39), p.8946-8954
Hauptverfasser: Dutta Chowdhury, Abhishek, Yarulina, Irina, Abou-Hamad, Edy, Gurinov, Andrei, Gascon, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8954
container_issue 39
container_start_page 8946
container_title Chemical science (Cambridge)
container_volume 1
creator Dutta Chowdhury, Abhishek
Yarulina, Irina
Abou-Hamad, Edy
Gurinov, Andrei
Gascon, Jorge
description After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' ( via direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites ( i.e. , via the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime. Surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy has been applied to identify the role of surface-carbene species and elucidating Brønsted-Lewis acid synergy during the zeolite-catalyzed methanol-to-hydrocarbon process.
doi_str_mv 10.1039/c9sc02215e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32190235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379019096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-3c78d35c6c7136e35c3d22684fd75fdd3b63e08d5d7ead7c7173e89543d598873</originalsourceid><addsrcrecordid>eNpdkkuLFDEUhQtRnGGcjXsl4EaE0lRSqVQ2gjbjA1oFR9dFOrnVlaE6KXNTSvXfcuPeP2a0x_aRTQ7cj8NJ7imKuxV9XFGunhiFhjJWCbhRnDJaV2UjuLp51IyeFOeIVzQfzivB5O3ihLNKUcbFafH1co69NkDAD9obsMQuXu-cIX42I-hIpjDq6PY6ueAJhtHZEpNOQN6-eU9wApNiQBOmheAAFsnotkMimX0ev3_zmMCWa_jikGjjLMHFQ9wuxM7R-S1JA5A9ZNPsZ3TS47LPEXaQcpgwlimUw2JjMDpusuOUFSDeKW71ekQ4v77Pio8vLj6sXpXrdy9fr56tS1OzNpXcyNZyYRojK95AVtwy1rR1b6XoreWbhgNtrbAStJWZkhxaJWpuhWpbyc-Kpwffad7swBrwKeqxm6Lb6bh0Qbvu34l3Q7cNnztJm1ayOhs8vDaI4dMMmLqdQwPjqD2EGTvGpaJ5E6rJ6IP_0KswR5-flynKqVA1bTP16ECZ_OcYoT-GqWj3sw7dSl2uftXhIsP3_45_RH8vPwP3DkBEc5z-6RP_AV-fv7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303059408</pqid></control><display><type>article</type><title>Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Dutta Chowdhury, Abhishek ; Yarulina, Irina ; Abou-Hamad, Edy ; Gurinov, Andrei ; Gascon, Jorge</creator><creatorcontrib>Dutta Chowdhury, Abhishek ; Yarulina, Irina ; Abou-Hamad, Edy ; Gurinov, Andrei ; Gascon, Jorge</creatorcontrib><description>After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' ( via direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites ( i.e. , via the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime. Surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy has been applied to identify the role of surface-carbene species and elucidating Brønsted-Lewis acid synergy during the zeolite-catalyzed methanol-to-hydrocarbon process.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc02215e</identifier><identifier>PMID: 32190235</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbon ; Catalysts ; Chemistry ; Coupling (molecular) ; Deactivation ; Hydrocarbons ; Lewis acid ; Methanol ; NMR spectroscopy ; Polarization ; Reaction mechanisms ; Reaction products ; Selectivity ; Solid state ; Spectrum analysis ; Zeolites</subject><ispartof>Chemical science (Cambridge), 2019-10, Vol.1 (39), p.8946-8954</ispartof><rights>This journal is © The Royal Society of Chemistry 2019.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-3c78d35c6c7136e35c3d22684fd75fdd3b63e08d5d7ead7c7173e89543d598873</citedby><cites>FETCH-LOGICAL-c428t-3c78d35c6c7136e35c3d22684fd75fdd3b63e08d5d7ead7c7173e89543d598873</cites><orcidid>0000-0002-9551-4535 ; 0000-0001-7558-7123 ; 0000-0002-4121-7375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068724/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068724/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32190235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta Chowdhury, Abhishek</creatorcontrib><creatorcontrib>Yarulina, Irina</creatorcontrib><creatorcontrib>Abou-Hamad, Edy</creatorcontrib><creatorcontrib>Gurinov, Andrei</creatorcontrib><creatorcontrib>Gascon, Jorge</creatorcontrib><title>Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' ( via direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites ( i.e. , via the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime. Surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy has been applied to identify the role of surface-carbene species and elucidating Brønsted-Lewis acid synergy during the zeolite-catalyzed methanol-to-hydrocarbon process.</description><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Coupling (molecular)</subject><subject>Deactivation</subject><subject>Hydrocarbons</subject><subject>Lewis acid</subject><subject>Methanol</subject><subject>NMR spectroscopy</subject><subject>Polarization</subject><subject>Reaction mechanisms</subject><subject>Reaction products</subject><subject>Selectivity</subject><subject>Solid state</subject><subject>Spectrum analysis</subject><subject>Zeolites</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkkuLFDEUhQtRnGGcjXsl4EaE0lRSqVQ2gjbjA1oFR9dFOrnVlaE6KXNTSvXfcuPeP2a0x_aRTQ7cj8NJ7imKuxV9XFGunhiFhjJWCbhRnDJaV2UjuLp51IyeFOeIVzQfzivB5O3ihLNKUcbFafH1co69NkDAD9obsMQuXu-cIX42I-hIpjDq6PY6ueAJhtHZEpNOQN6-eU9wApNiQBOmheAAFsnotkMimX0ev3_zmMCWa_jikGjjLMHFQ9wuxM7R-S1JA5A9ZNPsZ3TS47LPEXaQcpgwlimUw2JjMDpusuOUFSDeKW71ekQ4v77Pio8vLj6sXpXrdy9fr56tS1OzNpXcyNZyYRojK95AVtwy1rR1b6XoreWbhgNtrbAStJWZkhxaJWpuhWpbyc-Kpwffad7swBrwKeqxm6Lb6bh0Qbvu34l3Q7cNnztJm1ayOhs8vDaI4dMMmLqdQwPjqD2EGTvGpaJ5E6rJ6IP_0KswR5-flynKqVA1bTP16ECZ_OcYoT-GqWj3sw7dSl2uftXhIsP3_45_RH8vPwP3DkBEc5z-6RP_AV-fv7Y</recordid><startdate>20191021</startdate><enddate>20191021</enddate><creator>Dutta Chowdhury, Abhishek</creator><creator>Yarulina, Irina</creator><creator>Abou-Hamad, Edy</creator><creator>Gurinov, Andrei</creator><creator>Gascon, Jorge</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9551-4535</orcidid><orcidid>https://orcid.org/0000-0001-7558-7123</orcidid><orcidid>https://orcid.org/0000-0002-4121-7375</orcidid></search><sort><creationdate>20191021</creationdate><title>Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process</title><author>Dutta Chowdhury, Abhishek ; Yarulina, Irina ; Abou-Hamad, Edy ; Gurinov, Andrei ; Gascon, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-3c78d35c6c7136e35c3d22684fd75fdd3b63e08d5d7ead7c7173e89543d598873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Coupling (molecular)</topic><topic>Deactivation</topic><topic>Hydrocarbons</topic><topic>Lewis acid</topic><topic>Methanol</topic><topic>NMR spectroscopy</topic><topic>Polarization</topic><topic>Reaction mechanisms</topic><topic>Reaction products</topic><topic>Selectivity</topic><topic>Solid state</topic><topic>Spectrum analysis</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta Chowdhury, Abhishek</creatorcontrib><creatorcontrib>Yarulina, Irina</creatorcontrib><creatorcontrib>Abou-Hamad, Edy</creatorcontrib><creatorcontrib>Gurinov, Andrei</creatorcontrib><creatorcontrib>Gascon, Jorge</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta Chowdhury, Abhishek</au><au>Yarulina, Irina</au><au>Abou-Hamad, Edy</au><au>Gurinov, Andrei</au><au>Gascon, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-10-21</date><risdate>2019</risdate><volume>1</volume><issue>39</issue><spage>8946</spage><epage>8954</epage><pages>8946-8954</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' ( via direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites ( i.e. , via the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime. Surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy has been applied to identify the role of surface-carbene species and elucidating Brønsted-Lewis acid synergy during the zeolite-catalyzed methanol-to-hydrocarbon process.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32190235</pmid><doi>10.1039/c9sc02215e</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9551-4535</orcidid><orcidid>https://orcid.org/0000-0001-7558-7123</orcidid><orcidid>https://orcid.org/0000-0002-4121-7375</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2019-10, Vol.1 (39), p.8946-8954
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmed_primary_32190235
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Carbon
Catalysts
Chemistry
Coupling (molecular)
Deactivation
Hydrocarbons
Lewis acid
Methanol
NMR spectroscopy
Polarization
Reaction mechanisms
Reaction products
Selectivity
Solid state
Spectrum analysis
Zeolites
title Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20enhanced%20dynamic%20nuclear%20polarization%20solid-state%20NMR%20spectroscopy%20sheds%20light%20on%20Br%C3%B8nsted-Lewis%20acid%20synergy%20during%20the%20zeolite%20catalyzed%20methanol-to-hydrocarbon%20process&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Dutta%20Chowdhury,%20Abhishek&rft.date=2019-10-21&rft.volume=1&rft.issue=39&rft.spage=8946&rft.epage=8954&rft.pages=8946-8954&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc02215e&rft_dat=%3Cproquest_pubme%3E2379019096%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303059408&rft_id=info:pmid/32190235&rfr_iscdi=true