Machine Learning Uncovers Food- and Excipient-Drug Interactions

Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2020-03, Vol.30 (11), p.3710-3716.e4
Hauptverfasser: Reker, Daniel, Shi, Yunhua, Kirtane, Ameya R., Hess, Kaitlyn, Zhong, Grace J., Crane, Evan, Lin, Chih-Hsin, Langer, Robert, Traverso, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3716.e4
container_issue 11
container_start_page 3710
container_title Cell reports (Cambridge)
container_volume 30
creator Reker, Daniel
Shi, Yunhua
Kirtane, Ameya R.
Hess, Kaitlyn
Zhong, Grace J.
Crane, Evan
Lin, Chih-Hsin
Langer, Robert
Traverso, Giovanni
description Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at these concentrations and might alter treatment outcomes. To speed up such discoveries, we apply state-of-the-art machine learning to delineate currently unknown biological effects of inactive ingredients—focusing on P-glycoprotein (P-gp) and uridine diphosphate-glucuronosyltransferase-2B7 (UGT2B7), two proteins that impact the pharmacokinetics of approximately 20% of FDA-approved drugs. Our platform identifies vitamin A palmitate and abietic acid as inhibitors of P-gp and UGT2B7, respectively; in silico, in vitro, ex vivo, and in vivo validations support these interactions. Our predictive framework can elucidate biological effects of commonly consumed chemical matter with implications on food- and excipient-drug interactions and functional drug formulation development. [Display omitted] •Machine learning predicts biological effects of excipients and GRAS compounds•Abietic acid and gum rosin inhibit UGT2b7 metabolism ex vivo•Vitamin A palmitate inhibits P-glycoprotein transport in vivo•Such associations can cause unknown drug interactions Reker et al. use machine learning to identify biological activities of food and drug additives. Validation confirms vitamin A palmitate as an inhibitor of P-glycoprotein transport and abietic acid as an inhibitor of UGT2b7 metabolism. Such associations have important implications as food- or excipient-drug interactions.
doi_str_mv 10.1016/j.celrep.2020.02.094
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32187543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124720302680</els_id><doaj_id>oai_doaj_org_article_fd986bf05042470bae906a99e91ac6a3</doaj_id><sourcerecordid>S2211124720302680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-90ed218444d917e9f300afd4ab4bc98be335300e1e3cb3f6659a49707bd9fbd53</originalsourceid><addsrcrecordid>eNqNkVtvEzEQhS0EolXpP0Bo39Eu48te_AJCoYVIQbzQZ8uXceootSPvJoV_j8OW0L4g_GJrfM4ZzXyEvKbQUKDdu01jcZtx1zBg0ABrQIpn5JwxSmvKRP_80fuMXI7jBsrpgFIpXpIzzujQt4Kfkw9ftb0NEasV6hxDXFc30aYD5rG6TsnVlY6uuvphwy5gnOpPeb-ulnHCrO0UUhxfkRdeb0e8fLgvyM311ffFl3r17fNy8XFV25bJqZaArvQUQjhJe5SeA2jvhDbCWDkY5LwtJaTIreG-61qpheyhN05641p-QZZzrkt6o3Y53On8UyUd1O9Cymul8xTsFpV3cuiMhxZEmR6MRgmdlhIl1bbTvGS9n7N2e3OHzpbBst4-CX36E8OtWqeD6mkvOT8GiDnA5jSOGf3JS0Ed-aiNmvmoIx8FTBU-xfbmcd-T6Q-NIhhmwT2a5EdbVm7xJCsAWwZD0ZUX5Ysw6SOCRdrHqVjf_r_17wawIDsEzOrB4UJGO5Wdhn-P8gv1zcPs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning Uncovers Food- and Excipient-Drug Interactions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Reker, Daniel ; Shi, Yunhua ; Kirtane, Ameya R. ; Hess, Kaitlyn ; Zhong, Grace J. ; Crane, Evan ; Lin, Chih-Hsin ; Langer, Robert ; Traverso, Giovanni</creator><creatorcontrib>Reker, Daniel ; Shi, Yunhua ; Kirtane, Ameya R. ; Hess, Kaitlyn ; Zhong, Grace J. ; Crane, Evan ; Lin, Chih-Hsin ; Langer, Robert ; Traverso, Giovanni</creatorcontrib><description>Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at these concentrations and might alter treatment outcomes. To speed up such discoveries, we apply state-of-the-art machine learning to delineate currently unknown biological effects of inactive ingredients—focusing on P-glycoprotein (P-gp) and uridine diphosphate-glucuronosyltransferase-2B7 (UGT2B7), two proteins that impact the pharmacokinetics of approximately 20% of FDA-approved drugs. Our platform identifies vitamin A palmitate and abietic acid as inhibitors of P-gp and UGT2B7, respectively; in silico, in vitro, ex vivo, and in vivo validations support these interactions. Our predictive framework can elucidate biological effects of commonly consumed chemical matter with implications on food- and excipient-drug interactions and functional drug formulation development. [Display omitted] •Machine learning predicts biological effects of excipients and GRAS compounds•Abietic acid and gum rosin inhibit UGT2b7 metabolism ex vivo•Vitamin A palmitate inhibits P-glycoprotein transport in vivo•Such associations can cause unknown drug interactions Reker et al. use machine learning to identify biological activities of food and drug additives. Validation confirms vitamin A palmitate as an inhibitor of P-glycoprotein transport and abietic acid as an inhibitor of UGT2b7 metabolism. Such associations have important implications as food- or excipient-drug interactions.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2020.02.094</identifier><identifier>PMID: 32187543</identifier><language>eng</language><publisher>CAMBRIDGE: Elsevier Inc</publisher><subject>Abietanes - chemistry ; Abietanes - pharmacology ; Animals ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism ; Biological Assay ; Cell Biology ; data science ; Diterpenes - pharmacology ; drug delivery ; Drug Interactions ; excipient-drug interactions ; Excipients - chemistry ; Female ; Food ; food-drug interactions ; Glucuronosyltransferase - antagonists &amp; inhibitors ; Glucuronosyltransferase - metabolism ; Hep G2 Cells ; Humans ; inactive ingredients ; Life Sciences &amp; Biomedicine ; Machine Learning ; Mice, Inbred BALB C ; Pharmaceutical Preparations - metabolism ; pharmacokinetics ; pharmacology ; Retinyl Esters - pharmacology ; Science &amp; Technology ; Swine ; United States ; United States Food and Drug Administration ; virtual screening</subject><ispartof>Cell reports (Cambridge), 2020-03, Vol.30 (11), p.3710-3716.e4</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>32</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000520843300013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c529t-90ed218444d917e9f300afd4ab4bc98be335300e1e3cb3f6659a49707bd9fbd53</citedby><cites>FETCH-LOGICAL-c529t-90ed218444d917e9f300afd4ab4bc98be335300e1e3cb3f6659a49707bd9fbd53</cites><orcidid>0000-0001-7851-4077 ; 0000-0002-3784-2995 ; 0000-0003-4789-7380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,866,887,2106,2118,27933,27934,28257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32187543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reker, Daniel</creatorcontrib><creatorcontrib>Shi, Yunhua</creatorcontrib><creatorcontrib>Kirtane, Ameya R.</creatorcontrib><creatorcontrib>Hess, Kaitlyn</creatorcontrib><creatorcontrib>Zhong, Grace J.</creatorcontrib><creatorcontrib>Crane, Evan</creatorcontrib><creatorcontrib>Lin, Chih-Hsin</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Traverso, Giovanni</creatorcontrib><title>Machine Learning Uncovers Food- and Excipient-Drug Interactions</title><title>Cell reports (Cambridge)</title><addtitle>CELL REP</addtitle><addtitle>Cell Rep</addtitle><description>Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at these concentrations and might alter treatment outcomes. To speed up such discoveries, we apply state-of-the-art machine learning to delineate currently unknown biological effects of inactive ingredients—focusing on P-glycoprotein (P-gp) and uridine diphosphate-glucuronosyltransferase-2B7 (UGT2B7), two proteins that impact the pharmacokinetics of approximately 20% of FDA-approved drugs. Our platform identifies vitamin A palmitate and abietic acid as inhibitors of P-gp and UGT2B7, respectively; in silico, in vitro, ex vivo, and in vivo validations support these interactions. Our predictive framework can elucidate biological effects of commonly consumed chemical matter with implications on food- and excipient-drug interactions and functional drug formulation development. [Display omitted] •Machine learning predicts biological effects of excipients and GRAS compounds•Abietic acid and gum rosin inhibit UGT2b7 metabolism ex vivo•Vitamin A palmitate inhibits P-glycoprotein transport in vivo•Such associations can cause unknown drug interactions Reker et al. use machine learning to identify biological activities of food and drug additives. Validation confirms vitamin A palmitate as an inhibitor of P-glycoprotein transport and abietic acid as an inhibitor of UGT2b7 metabolism. Such associations have important implications as food- or excipient-drug interactions.</description><subject>Abietanes - chemistry</subject><subject>Abietanes - pharmacology</subject><subject>Animals</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</subject><subject>Biological Assay</subject><subject>Cell Biology</subject><subject>data science</subject><subject>Diterpenes - pharmacology</subject><subject>drug delivery</subject><subject>Drug Interactions</subject><subject>excipient-drug interactions</subject><subject>Excipients - chemistry</subject><subject>Female</subject><subject>Food</subject><subject>food-drug interactions</subject><subject>Glucuronosyltransferase - antagonists &amp; inhibitors</subject><subject>Glucuronosyltransferase - metabolism</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>inactive ingredients</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Machine Learning</subject><subject>Mice, Inbred BALB C</subject><subject>Pharmaceutical Preparations - metabolism</subject><subject>pharmacokinetics</subject><subject>pharmacology</subject><subject>Retinyl Esters - pharmacology</subject><subject>Science &amp; Technology</subject><subject>Swine</subject><subject>United States</subject><subject>United States Food and Drug Administration</subject><subject>virtual screening</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkVtvEzEQhS0EolXpP0Bo39Eu48te_AJCoYVIQbzQZ8uXceootSPvJoV_j8OW0L4g_GJrfM4ZzXyEvKbQUKDdu01jcZtx1zBg0ABrQIpn5JwxSmvKRP_80fuMXI7jBsrpgFIpXpIzzujQt4Kfkw9ftb0NEasV6hxDXFc30aYD5rG6TsnVlY6uuvphwy5gnOpPeb-ulnHCrO0UUhxfkRdeb0e8fLgvyM311ffFl3r17fNy8XFV25bJqZaArvQUQjhJe5SeA2jvhDbCWDkY5LwtJaTIreG-61qpheyhN05641p-QZZzrkt6o3Y53On8UyUd1O9Cymul8xTsFpV3cuiMhxZEmR6MRgmdlhIl1bbTvGS9n7N2e3OHzpbBst4-CX36E8OtWqeD6mkvOT8GiDnA5jSOGf3JS0Ed-aiNmvmoIx8FTBU-xfbmcd-T6Q-NIhhmwT2a5EdbVm7xJCsAWwZD0ZUX5Ysw6SOCRdrHqVjf_r_17wawIDsEzOrB4UJGO5Wdhn-P8gv1zcPs</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Reker, Daniel</creator><creator>Shi, Yunhua</creator><creator>Kirtane, Ameya R.</creator><creator>Hess, Kaitlyn</creator><creator>Zhong, Grace J.</creator><creator>Crane, Evan</creator><creator>Lin, Chih-Hsin</creator><creator>Langer, Robert</creator><creator>Traverso, Giovanni</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7851-4077</orcidid><orcidid>https://orcid.org/0000-0002-3784-2995</orcidid><orcidid>https://orcid.org/0000-0003-4789-7380</orcidid></search><sort><creationdate>20200317</creationdate><title>Machine Learning Uncovers Food- and Excipient-Drug Interactions</title><author>Reker, Daniel ; Shi, Yunhua ; Kirtane, Ameya R. ; Hess, Kaitlyn ; Zhong, Grace J. ; Crane, Evan ; Lin, Chih-Hsin ; Langer, Robert ; Traverso, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-90ed218444d917e9f300afd4ab4bc98be335300e1e3cb3f6659a49707bd9fbd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abietanes - chemistry</topic><topic>Abietanes - pharmacology</topic><topic>Animals</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</topic><topic>Biological Assay</topic><topic>Cell Biology</topic><topic>data science</topic><topic>Diterpenes - pharmacology</topic><topic>drug delivery</topic><topic>Drug Interactions</topic><topic>excipient-drug interactions</topic><topic>Excipients - chemistry</topic><topic>Female</topic><topic>Food</topic><topic>food-drug interactions</topic><topic>Glucuronosyltransferase - antagonists &amp; inhibitors</topic><topic>Glucuronosyltransferase - metabolism</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>inactive ingredients</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Machine Learning</topic><topic>Mice, Inbred BALB C</topic><topic>Pharmaceutical Preparations - metabolism</topic><topic>pharmacokinetics</topic><topic>pharmacology</topic><topic>Retinyl Esters - pharmacology</topic><topic>Science &amp; Technology</topic><topic>Swine</topic><topic>United States</topic><topic>United States Food and Drug Administration</topic><topic>virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reker, Daniel</creatorcontrib><creatorcontrib>Shi, Yunhua</creatorcontrib><creatorcontrib>Kirtane, Ameya R.</creatorcontrib><creatorcontrib>Hess, Kaitlyn</creatorcontrib><creatorcontrib>Zhong, Grace J.</creatorcontrib><creatorcontrib>Crane, Evan</creatorcontrib><creatorcontrib>Lin, Chih-Hsin</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Traverso, Giovanni</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reker, Daniel</au><au>Shi, Yunhua</au><au>Kirtane, Ameya R.</au><au>Hess, Kaitlyn</au><au>Zhong, Grace J.</au><au>Crane, Evan</au><au>Lin, Chih-Hsin</au><au>Langer, Robert</au><au>Traverso, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Uncovers Food- and Excipient-Drug Interactions</atitle><jtitle>Cell reports (Cambridge)</jtitle><stitle>CELL REP</stitle><addtitle>Cell Rep</addtitle><date>2020-03-17</date><risdate>2020</risdate><volume>30</volume><issue>11</issue><spage>3710</spage><epage>3716.e4</epage><pages>3710-3716.e4</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at these concentrations and might alter treatment outcomes. To speed up such discoveries, we apply state-of-the-art machine learning to delineate currently unknown biological effects of inactive ingredients—focusing on P-glycoprotein (P-gp) and uridine diphosphate-glucuronosyltransferase-2B7 (UGT2B7), two proteins that impact the pharmacokinetics of approximately 20% of FDA-approved drugs. Our platform identifies vitamin A palmitate and abietic acid as inhibitors of P-gp and UGT2B7, respectively; in silico, in vitro, ex vivo, and in vivo validations support these interactions. Our predictive framework can elucidate biological effects of commonly consumed chemical matter with implications on food- and excipient-drug interactions and functional drug formulation development. [Display omitted] •Machine learning predicts biological effects of excipients and GRAS compounds•Abietic acid and gum rosin inhibit UGT2b7 metabolism ex vivo•Vitamin A palmitate inhibits P-glycoprotein transport in vivo•Such associations can cause unknown drug interactions Reker et al. use machine learning to identify biological activities of food and drug additives. Validation confirms vitamin A palmitate as an inhibitor of P-glycoprotein transport and abietic acid as an inhibitor of UGT2b7 metabolism. Such associations have important implications as food- or excipient-drug interactions.</abstract><cop>CAMBRIDGE</cop><pub>Elsevier Inc</pub><pmid>32187543</pmid><doi>10.1016/j.celrep.2020.02.094</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7851-4077</orcidid><orcidid>https://orcid.org/0000-0002-3784-2995</orcidid><orcidid>https://orcid.org/0000-0003-4789-7380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2020-03, Vol.30 (11), p.3710-3716.e4
issn 2211-1247
2211-1247
language eng
recordid cdi_pubmed_primary_32187543
source MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Abietanes - chemistry
Abietanes - pharmacology
Animals
ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism
Biological Assay
Cell Biology
data science
Diterpenes - pharmacology
drug delivery
Drug Interactions
excipient-drug interactions
Excipients - chemistry
Female
Food
food-drug interactions
Glucuronosyltransferase - antagonists & inhibitors
Glucuronosyltransferase - metabolism
Hep G2 Cells
Humans
inactive ingredients
Life Sciences & Biomedicine
Machine Learning
Mice, Inbred BALB C
Pharmaceutical Preparations - metabolism
pharmacokinetics
pharmacology
Retinyl Esters - pharmacology
Science & Technology
Swine
United States
United States Food and Drug Administration
virtual screening
title Machine Learning Uncovers Food- and Excipient-Drug Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T08%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Uncovers%20Food-%20and%20Excipient-Drug%20Interactions&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Reker,%20Daniel&rft.date=2020-03-17&rft.volume=30&rft.issue=11&rft.spage=3710&rft.epage=3716.e4&rft.pages=3710-3716.e4&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2020.02.094&rft_dat=%3Celsevier_pubme%3ES2211124720302680%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32187543&rft_els_id=S2211124720302680&rft_doaj_id=oai_doaj_org_article_fd986bf05042470bae906a99e91ac6a3&rfr_iscdi=true