Machine Learning Uncovers Food- and Excipient-Drug Interactions
Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at...
Gespeichert in:
Veröffentlicht in: | Cell reports (Cambridge) 2020-03, Vol.30 (11), p.3710-3716.e4 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3716.e4 |
---|---|
container_issue | 11 |
container_start_page | 3710 |
container_title | Cell reports (Cambridge) |
container_volume | 30 |
creator | Reker, Daniel Shi, Yunhua Kirtane, Ameya R. Hess, Kaitlyn Zhong, Grace J. Crane, Evan Lin, Chih-Hsin Langer, Robert Traverso, Giovanni |
description | Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at these concentrations and might alter treatment outcomes. To speed up such discoveries, we apply state-of-the-art machine learning to delineate currently unknown biological effects of inactive ingredients—focusing on P-glycoprotein (P-gp) and uridine diphosphate-glucuronosyltransferase-2B7 (UGT2B7), two proteins that impact the pharmacokinetics of approximately 20% of FDA-approved drugs. Our platform identifies vitamin A palmitate and abietic acid as inhibitors of P-gp and UGT2B7, respectively; in silico, in vitro, ex vivo, and in vivo validations support these interactions. Our predictive framework can elucidate biological effects of commonly consumed chemical matter with implications on food- and excipient-drug interactions and functional drug formulation development.
[Display omitted]
•Machine learning predicts biological effects of excipients and GRAS compounds•Abietic acid and gum rosin inhibit UGT2b7 metabolism ex vivo•Vitamin A palmitate inhibits P-glycoprotein transport in vivo•Such associations can cause unknown drug interactions
Reker et al. use machine learning to identify biological activities of food and drug additives. Validation confirms vitamin A palmitate as an inhibitor of P-glycoprotein transport and abietic acid as an inhibitor of UGT2b7 metabolism. Such associations have important implications as food- or excipient-drug interactions. |
doi_str_mv | 10.1016/j.celrep.2020.02.094 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32187543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124720302680</els_id><doaj_id>oai_doaj_org_article_fd986bf05042470bae906a99e91ac6a3</doaj_id><sourcerecordid>S2211124720302680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-90ed218444d917e9f300afd4ab4bc98be335300e1e3cb3f6659a49707bd9fbd53</originalsourceid><addsrcrecordid>eNqNkVtvEzEQhS0EolXpP0Bo39Eu48te_AJCoYVIQbzQZ8uXceootSPvJoV_j8OW0L4g_GJrfM4ZzXyEvKbQUKDdu01jcZtx1zBg0ABrQIpn5JwxSmvKRP_80fuMXI7jBsrpgFIpXpIzzujQt4Kfkw9ftb0NEasV6hxDXFc30aYD5rG6TsnVlY6uuvphwy5gnOpPeb-ulnHCrO0UUhxfkRdeb0e8fLgvyM311ffFl3r17fNy8XFV25bJqZaArvQUQjhJe5SeA2jvhDbCWDkY5LwtJaTIreG-61qpheyhN05641p-QZZzrkt6o3Y53On8UyUd1O9Cymul8xTsFpV3cuiMhxZEmR6MRgmdlhIl1bbTvGS9n7N2e3OHzpbBst4-CX36E8OtWqeD6mkvOT8GiDnA5jSOGf3JS0Ed-aiNmvmoIx8FTBU-xfbmcd-T6Q-NIhhmwT2a5EdbVm7xJCsAWwZD0ZUX5Ysw6SOCRdrHqVjf_r_17wawIDsEzOrB4UJGO5Wdhn-P8gv1zcPs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning Uncovers Food- and Excipient-Drug Interactions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Reker, Daniel ; Shi, Yunhua ; Kirtane, Ameya R. ; Hess, Kaitlyn ; Zhong, Grace J. ; Crane, Evan ; Lin, Chih-Hsin ; Langer, Robert ; Traverso, Giovanni</creator><creatorcontrib>Reker, Daniel ; Shi, Yunhua ; Kirtane, Ameya R. ; Hess, Kaitlyn ; Zhong, Grace J. ; Crane, Evan ; Lin, Chih-Hsin ; Langer, Robert ; Traverso, Giovanni</creatorcontrib><description>Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at these concentrations and might alter treatment outcomes. To speed up such discoveries, we apply state-of-the-art machine learning to delineate currently unknown biological effects of inactive ingredients—focusing on P-glycoprotein (P-gp) and uridine diphosphate-glucuronosyltransferase-2B7 (UGT2B7), two proteins that impact the pharmacokinetics of approximately 20% of FDA-approved drugs. Our platform identifies vitamin A palmitate and abietic acid as inhibitors of P-gp and UGT2B7, respectively; in silico, in vitro, ex vivo, and in vivo validations support these interactions. Our predictive framework can elucidate biological effects of commonly consumed chemical matter with implications on food- and excipient-drug interactions and functional drug formulation development.
[Display omitted]
•Machine learning predicts biological effects of excipients and GRAS compounds•Abietic acid and gum rosin inhibit UGT2b7 metabolism ex vivo•Vitamin A palmitate inhibits P-glycoprotein transport in vivo•Such associations can cause unknown drug interactions
Reker et al. use machine learning to identify biological activities of food and drug additives. Validation confirms vitamin A palmitate as an inhibitor of P-glycoprotein transport and abietic acid as an inhibitor of UGT2b7 metabolism. Such associations have important implications as food- or excipient-drug interactions.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2020.02.094</identifier><identifier>PMID: 32187543</identifier><language>eng</language><publisher>CAMBRIDGE: Elsevier Inc</publisher><subject>Abietanes - chemistry ; Abietanes - pharmacology ; Animals ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism ; Biological Assay ; Cell Biology ; data science ; Diterpenes - pharmacology ; drug delivery ; Drug Interactions ; excipient-drug interactions ; Excipients - chemistry ; Female ; Food ; food-drug interactions ; Glucuronosyltransferase - antagonists & inhibitors ; Glucuronosyltransferase - metabolism ; Hep G2 Cells ; Humans ; inactive ingredients ; Life Sciences & Biomedicine ; Machine Learning ; Mice, Inbred BALB C ; Pharmaceutical Preparations - metabolism ; pharmacokinetics ; pharmacology ; Retinyl Esters - pharmacology ; Science & Technology ; Swine ; United States ; United States Food and Drug Administration ; virtual screening</subject><ispartof>Cell reports (Cambridge), 2020-03, Vol.30 (11), p.3710-3716.e4</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>32</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000520843300013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c529t-90ed218444d917e9f300afd4ab4bc98be335300e1e3cb3f6659a49707bd9fbd53</citedby><cites>FETCH-LOGICAL-c529t-90ed218444d917e9f300afd4ab4bc98be335300e1e3cb3f6659a49707bd9fbd53</cites><orcidid>0000-0001-7851-4077 ; 0000-0002-3784-2995 ; 0000-0003-4789-7380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,866,887,2106,2118,27933,27934,28257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32187543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reker, Daniel</creatorcontrib><creatorcontrib>Shi, Yunhua</creatorcontrib><creatorcontrib>Kirtane, Ameya R.</creatorcontrib><creatorcontrib>Hess, Kaitlyn</creatorcontrib><creatorcontrib>Zhong, Grace J.</creatorcontrib><creatorcontrib>Crane, Evan</creatorcontrib><creatorcontrib>Lin, Chih-Hsin</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Traverso, Giovanni</creatorcontrib><title>Machine Learning Uncovers Food- and Excipient-Drug Interactions</title><title>Cell reports (Cambridge)</title><addtitle>CELL REP</addtitle><addtitle>Cell Rep</addtitle><description>Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at these concentrations and might alter treatment outcomes. To speed up such discoveries, we apply state-of-the-art machine learning to delineate currently unknown biological effects of inactive ingredients—focusing on P-glycoprotein (P-gp) and uridine diphosphate-glucuronosyltransferase-2B7 (UGT2B7), two proteins that impact the pharmacokinetics of approximately 20% of FDA-approved drugs. Our platform identifies vitamin A palmitate and abietic acid as inhibitors of P-gp and UGT2B7, respectively; in silico, in vitro, ex vivo, and in vivo validations support these interactions. Our predictive framework can elucidate biological effects of commonly consumed chemical matter with implications on food- and excipient-drug interactions and functional drug formulation development.
[Display omitted]
•Machine learning predicts biological effects of excipients and GRAS compounds•Abietic acid and gum rosin inhibit UGT2b7 metabolism ex vivo•Vitamin A palmitate inhibits P-glycoprotein transport in vivo•Such associations can cause unknown drug interactions
Reker et al. use machine learning to identify biological activities of food and drug additives. Validation confirms vitamin A palmitate as an inhibitor of P-glycoprotein transport and abietic acid as an inhibitor of UGT2b7 metabolism. Such associations have important implications as food- or excipient-drug interactions.</description><subject>Abietanes - chemistry</subject><subject>Abietanes - pharmacology</subject><subject>Animals</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</subject><subject>Biological Assay</subject><subject>Cell Biology</subject><subject>data science</subject><subject>Diterpenes - pharmacology</subject><subject>drug delivery</subject><subject>Drug Interactions</subject><subject>excipient-drug interactions</subject><subject>Excipients - chemistry</subject><subject>Female</subject><subject>Food</subject><subject>food-drug interactions</subject><subject>Glucuronosyltransferase - antagonists & inhibitors</subject><subject>Glucuronosyltransferase - metabolism</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>inactive ingredients</subject><subject>Life Sciences & Biomedicine</subject><subject>Machine Learning</subject><subject>Mice, Inbred BALB C</subject><subject>Pharmaceutical Preparations - metabolism</subject><subject>pharmacokinetics</subject><subject>pharmacology</subject><subject>Retinyl Esters - pharmacology</subject><subject>Science & Technology</subject><subject>Swine</subject><subject>United States</subject><subject>United States Food and Drug Administration</subject><subject>virtual screening</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkVtvEzEQhS0EolXpP0Bo39Eu48te_AJCoYVIQbzQZ8uXceootSPvJoV_j8OW0L4g_GJrfM4ZzXyEvKbQUKDdu01jcZtx1zBg0ABrQIpn5JwxSmvKRP_80fuMXI7jBsrpgFIpXpIzzujQt4Kfkw9ftb0NEasV6hxDXFc30aYD5rG6TsnVlY6uuvphwy5gnOpPeb-ulnHCrO0UUhxfkRdeb0e8fLgvyM311ffFl3r17fNy8XFV25bJqZaArvQUQjhJe5SeA2jvhDbCWDkY5LwtJaTIreG-61qpheyhN05641p-QZZzrkt6o3Y53On8UyUd1O9Cymul8xTsFpV3cuiMhxZEmR6MRgmdlhIl1bbTvGS9n7N2e3OHzpbBst4-CX36E8OtWqeD6mkvOT8GiDnA5jSOGf3JS0Ed-aiNmvmoIx8FTBU-xfbmcd-T6Q-NIhhmwT2a5EdbVm7xJCsAWwZD0ZUX5Ysw6SOCRdrHqVjf_r_17wawIDsEzOrB4UJGO5Wdhn-P8gv1zcPs</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Reker, Daniel</creator><creator>Shi, Yunhua</creator><creator>Kirtane, Ameya R.</creator><creator>Hess, Kaitlyn</creator><creator>Zhong, Grace J.</creator><creator>Crane, Evan</creator><creator>Lin, Chih-Hsin</creator><creator>Langer, Robert</creator><creator>Traverso, Giovanni</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7851-4077</orcidid><orcidid>https://orcid.org/0000-0002-3784-2995</orcidid><orcidid>https://orcid.org/0000-0003-4789-7380</orcidid></search><sort><creationdate>20200317</creationdate><title>Machine Learning Uncovers Food- and Excipient-Drug Interactions</title><author>Reker, Daniel ; Shi, Yunhua ; Kirtane, Ameya R. ; Hess, Kaitlyn ; Zhong, Grace J. ; Crane, Evan ; Lin, Chih-Hsin ; Langer, Robert ; Traverso, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-90ed218444d917e9f300afd4ab4bc98be335300e1e3cb3f6659a49707bd9fbd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abietanes - chemistry</topic><topic>Abietanes - pharmacology</topic><topic>Animals</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</topic><topic>Biological Assay</topic><topic>Cell Biology</topic><topic>data science</topic><topic>Diterpenes - pharmacology</topic><topic>drug delivery</topic><topic>Drug Interactions</topic><topic>excipient-drug interactions</topic><topic>Excipients - chemistry</topic><topic>Female</topic><topic>Food</topic><topic>food-drug interactions</topic><topic>Glucuronosyltransferase - antagonists & inhibitors</topic><topic>Glucuronosyltransferase - metabolism</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>inactive ingredients</topic><topic>Life Sciences & Biomedicine</topic><topic>Machine Learning</topic><topic>Mice, Inbred BALB C</topic><topic>Pharmaceutical Preparations - metabolism</topic><topic>pharmacokinetics</topic><topic>pharmacology</topic><topic>Retinyl Esters - pharmacology</topic><topic>Science & Technology</topic><topic>Swine</topic><topic>United States</topic><topic>United States Food and Drug Administration</topic><topic>virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reker, Daniel</creatorcontrib><creatorcontrib>Shi, Yunhua</creatorcontrib><creatorcontrib>Kirtane, Ameya R.</creatorcontrib><creatorcontrib>Hess, Kaitlyn</creatorcontrib><creatorcontrib>Zhong, Grace J.</creatorcontrib><creatorcontrib>Crane, Evan</creatorcontrib><creatorcontrib>Lin, Chih-Hsin</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Traverso, Giovanni</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reker, Daniel</au><au>Shi, Yunhua</au><au>Kirtane, Ameya R.</au><au>Hess, Kaitlyn</au><au>Zhong, Grace J.</au><au>Crane, Evan</au><au>Lin, Chih-Hsin</au><au>Langer, Robert</au><au>Traverso, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Uncovers Food- and Excipient-Drug Interactions</atitle><jtitle>Cell reports (Cambridge)</jtitle><stitle>CELL REP</stitle><addtitle>Cell Rep</addtitle><date>2020-03-17</date><risdate>2020</risdate><volume>30</volume><issue>11</issue><spage>3710</spage><epage>3716.e4</epage><pages>3710-3716.e4</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at these concentrations and might alter treatment outcomes. To speed up such discoveries, we apply state-of-the-art machine learning to delineate currently unknown biological effects of inactive ingredients—focusing on P-glycoprotein (P-gp) and uridine diphosphate-glucuronosyltransferase-2B7 (UGT2B7), two proteins that impact the pharmacokinetics of approximately 20% of FDA-approved drugs. Our platform identifies vitamin A palmitate and abietic acid as inhibitors of P-gp and UGT2B7, respectively; in silico, in vitro, ex vivo, and in vivo validations support these interactions. Our predictive framework can elucidate biological effects of commonly consumed chemical matter with implications on food- and excipient-drug interactions and functional drug formulation development.
[Display omitted]
•Machine learning predicts biological effects of excipients and GRAS compounds•Abietic acid and gum rosin inhibit UGT2b7 metabolism ex vivo•Vitamin A palmitate inhibits P-glycoprotein transport in vivo•Such associations can cause unknown drug interactions
Reker et al. use machine learning to identify biological activities of food and drug additives. Validation confirms vitamin A palmitate as an inhibitor of P-glycoprotein transport and abietic acid as an inhibitor of UGT2b7 metabolism. Such associations have important implications as food- or excipient-drug interactions.</abstract><cop>CAMBRIDGE</cop><pub>Elsevier Inc</pub><pmid>32187543</pmid><doi>10.1016/j.celrep.2020.02.094</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7851-4077</orcidid><orcidid>https://orcid.org/0000-0002-3784-2995</orcidid><orcidid>https://orcid.org/0000-0003-4789-7380</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2020-03, Vol.30 (11), p.3710-3716.e4 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_pubmed_primary_32187543 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Abietanes - chemistry Abietanes - pharmacology Animals ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism Biological Assay Cell Biology data science Diterpenes - pharmacology drug delivery Drug Interactions excipient-drug interactions Excipients - chemistry Female Food food-drug interactions Glucuronosyltransferase - antagonists & inhibitors Glucuronosyltransferase - metabolism Hep G2 Cells Humans inactive ingredients Life Sciences & Biomedicine Machine Learning Mice, Inbred BALB C Pharmaceutical Preparations - metabolism pharmacokinetics pharmacology Retinyl Esters - pharmacology Science & Technology Swine United States United States Food and Drug Administration virtual screening |
title | Machine Learning Uncovers Food- and Excipient-Drug Interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T08%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Uncovers%20Food-%20and%20Excipient-Drug%20Interactions&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Reker,%20Daniel&rft.date=2020-03-17&rft.volume=30&rft.issue=11&rft.spage=3710&rft.epage=3716.e4&rft.pages=3710-3716.e4&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2020.02.094&rft_dat=%3Celsevier_pubme%3ES2211124720302680%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32187543&rft_els_id=S2211124720302680&rft_doaj_id=oai_doaj_org_article_fd986bf05042470bae906a99e91ac6a3&rfr_iscdi=true |