Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy

In-room imaging is a prerequisite for adaptive proton therapy. The use of onboard cone-beam computed tomography (CBCT) imaging, which is routinely acquired for patient position verification, can enable daily dose reconstructions and plan adaptation decisions. Image quality deficiencies though, hampe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2020-05, Vol.65 (9), p.095002-095002, Article 095002
Hauptverfasser: Thummerer, Adrian, Zaffino, Paolo, Meijers, Arturs, Marmitt, Gabriel Guterres, Seco, Joao, Steenbakkers, Roel J H M, Langendijk, Johannes A, Both, Stefan, Spadea, Maria F, Knopf, Antje C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 095002
container_issue 9
container_start_page 095002
container_title Physics in medicine & biology
container_volume 65
creator Thummerer, Adrian
Zaffino, Paolo
Meijers, Arturs
Marmitt, Gabriel Guterres
Seco, Joao
Steenbakkers, Roel J H M
Langendijk, Johannes A
Both, Stefan
Spadea, Maria F
Knopf, Antje C
description In-room imaging is a prerequisite for adaptive proton therapy. The use of onboard cone-beam computed tomography (CBCT) imaging, which is routinely acquired for patient position verification, can enable daily dose reconstructions and plan adaptation decisions. Image quality deficiencies though, hamper dose calculation accuracy and make corrections of CBCTs a necessity. This study compared three methods to correct CBCTs and create synthetic CTs that are suitable for proton dose calculations. CBCTs, planning CTs and repeated CTs (rCT) from 33 H&N cancer patients were used to compare a deep convolutional neural network (DCNN), deformable image registration (DIR) and an analytical image-based correction method (AIC) for synthetic CT (sCT) generation. Image quality of sCTs was evaluated by comparison with a same-day rCT, using mean absolute error (MAE), mean error (ME), Dice similarity coefficient (DSC), structural non-uniformity (SNU) and signal/contrast-to-noise ratios (SNR/CNR) as metrics. Dosimetric accuracy was investigated in an intracranial setting by performing gamma analysis and calculating range shifts. Neural network-based sCTs resulted in the lowest MAE and ME (37/2 HU) and the highest DSC (0.96). While DIR and AIC generated images with a MAE of 44/77 HU, a ME of −8/1 HU and a DSC of 0.94/0.90. Gamma and range shift analysis showed almost no dosimetric difference between DCNN and DIR based sCTs. The lower image quality of AIC based sCTs affected dosimetric accuracy and resulted in lower pass ratios and higher range shifts. Patient-specific differences highlighted the advantages and disadvantages of each method. For the set of patients, the DCNN created synthetic CTs with the highest image quality. Accurate proton dose calculations were achieved by both DCNN and DIR based sCTs. The AIC method resulted in lower image quality and dose calculation accuracy was reduced compared to the other methods.
doi_str_mv 10.1088/1361-6560/ab7d54
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32143207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374316828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-c2a0e8ce3ca04a113466263d7343307b9944f9e519bc689b5cad5789e2d68c8c3</originalsourceid><addsrcrecordid>eNqNkE2L1TAUhoMoznV070qyU9A6Jx9N06UWv2DAzbgOaXLKZGib2qTK_ffm0pm7EnF1wuF53xMeQl4yeM9A6ysmFKtUreDK9o2v5SNyOK8ekwOAYFXL6vqCPEvpDoAxzeVTciE4k4JDcyBzF6fFriHFmcaBdh-7G9rbhJ6m45xvMQdHy2rCfBt9omkL2fYj0iGudFljLjEfE1JnR7eNNoc4Jxpmar1dcviFD1CpWu1yfE6eDHZM-OJ-XpIfnz_ddF-r6-9fvnUfrisnG5Urxy2gdiicBWkZE1IproRvhBQCmr5tpRxarFnbO6XbvnbW141ukXulnXbikrzZe8v5nxumbKaQHI6jnTFuyXDRSMGU5rqgsKNujSmtOJhlDZNdj4aBOVk2J6XmpNTslkvk1X371k_oz4EHrQXQO_Ab-zgkF3B2eMYAoBaMN4yXF7CuKD156-I25xJ9-__RQr_b6RAXcxe3dS5W__Xx13_Bl6kvlGkNtDUAN4sfxB_3C7RS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374316828</pqid></control><display><type>article</type><title>Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy</title><source>IOP Publishing Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Thummerer, Adrian ; Zaffino, Paolo ; Meijers, Arturs ; Marmitt, Gabriel Guterres ; Seco, Joao ; Steenbakkers, Roel J H M ; Langendijk, Johannes A ; Both, Stefan ; Spadea, Maria F ; Knopf, Antje C</creator><creatorcontrib>Thummerer, Adrian ; Zaffino, Paolo ; Meijers, Arturs ; Marmitt, Gabriel Guterres ; Seco, Joao ; Steenbakkers, Roel J H M ; Langendijk, Johannes A ; Both, Stefan ; Spadea, Maria F ; Knopf, Antje C</creatorcontrib><description>In-room imaging is a prerequisite for adaptive proton therapy. The use of onboard cone-beam computed tomography (CBCT) imaging, which is routinely acquired for patient position verification, can enable daily dose reconstructions and plan adaptation decisions. Image quality deficiencies though, hamper dose calculation accuracy and make corrections of CBCTs a necessity. This study compared three methods to correct CBCTs and create synthetic CTs that are suitable for proton dose calculations. CBCTs, planning CTs and repeated CTs (rCT) from 33 H&amp;N cancer patients were used to compare a deep convolutional neural network (DCNN), deformable image registration (DIR) and an analytical image-based correction method (AIC) for synthetic CT (sCT) generation. Image quality of sCTs was evaluated by comparison with a same-day rCT, using mean absolute error (MAE), mean error (ME), Dice similarity coefficient (DSC), structural non-uniformity (SNU) and signal/contrast-to-noise ratios (SNR/CNR) as metrics. Dosimetric accuracy was investigated in an intracranial setting by performing gamma analysis and calculating range shifts. Neural network-based sCTs resulted in the lowest MAE and ME (37/2 HU) and the highest DSC (0.96). While DIR and AIC generated images with a MAE of 44/77 HU, a ME of −8/1 HU and a DSC of 0.94/0.90. Gamma and range shift analysis showed almost no dosimetric difference between DCNN and DIR based sCTs. The lower image quality of AIC based sCTs affected dosimetric accuracy and resulted in lower pass ratios and higher range shifts. Patient-specific differences highlighted the advantages and disadvantages of each method. For the set of patients, the DCNN created synthetic CTs with the highest image quality. Accurate proton dose calculations were achieved by both DCNN and DIR based sCTs. The AIC method resulted in lower image quality and dose calculation accuracy was reduced compared to the other methods.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ab7d54</identifier><identifier>PMID: 32143207</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>BRISTOL: IOP Publishing</publisher><subject>adaptive proton therapy ; CBCT ; Engineering ; Engineering, Biomedical ; Life Sciences &amp; Biomedicine ; neural networks ; Radiology, Nuclear Medicine &amp; Medical Imaging ; Science &amp; Technology ; synthetic CT ; Technology</subject><ispartof>Physics in medicine &amp; biology, 2020-05, Vol.65 (9), p.095002-095002, Article 095002</ispartof><rights>2020 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>83</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000531271200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c476t-c2a0e8ce3ca04a113466263d7343307b9944f9e519bc689b5cad5789e2d68c8c3</citedby><cites>FETCH-LOGICAL-c476t-c2a0e8ce3ca04a113466263d7343307b9944f9e519bc689b5cad5789e2d68c8c3</cites><orcidid>0000-0002-8486-7001 ; 0000-0002-1874-5030 ; 0000-0002-0219-0157 ; 0000-0002-3647-6647 ; 0000-0002-9458-2202 ; 0000-0003-1083-372X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ab7d54/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,782,786,27933,27934,28257,53855,53902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32143207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thummerer, Adrian</creatorcontrib><creatorcontrib>Zaffino, Paolo</creatorcontrib><creatorcontrib>Meijers, Arturs</creatorcontrib><creatorcontrib>Marmitt, Gabriel Guterres</creatorcontrib><creatorcontrib>Seco, Joao</creatorcontrib><creatorcontrib>Steenbakkers, Roel J H M</creatorcontrib><creatorcontrib>Langendijk, Johannes A</creatorcontrib><creatorcontrib>Both, Stefan</creatorcontrib><creatorcontrib>Spadea, Maria F</creatorcontrib><creatorcontrib>Knopf, Antje C</creatorcontrib><title>Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>PHYS MED BIOL</addtitle><addtitle>Phys. Med. Biol</addtitle><description>In-room imaging is a prerequisite for adaptive proton therapy. The use of onboard cone-beam computed tomography (CBCT) imaging, which is routinely acquired for patient position verification, can enable daily dose reconstructions and plan adaptation decisions. Image quality deficiencies though, hamper dose calculation accuracy and make corrections of CBCTs a necessity. This study compared three methods to correct CBCTs and create synthetic CTs that are suitable for proton dose calculations. CBCTs, planning CTs and repeated CTs (rCT) from 33 H&amp;N cancer patients were used to compare a deep convolutional neural network (DCNN), deformable image registration (DIR) and an analytical image-based correction method (AIC) for synthetic CT (sCT) generation. Image quality of sCTs was evaluated by comparison with a same-day rCT, using mean absolute error (MAE), mean error (ME), Dice similarity coefficient (DSC), structural non-uniformity (SNU) and signal/contrast-to-noise ratios (SNR/CNR) as metrics. Dosimetric accuracy was investigated in an intracranial setting by performing gamma analysis and calculating range shifts. Neural network-based sCTs resulted in the lowest MAE and ME (37/2 HU) and the highest DSC (0.96). While DIR and AIC generated images with a MAE of 44/77 HU, a ME of −8/1 HU and a DSC of 0.94/0.90. Gamma and range shift analysis showed almost no dosimetric difference between DCNN and DIR based sCTs. The lower image quality of AIC based sCTs affected dosimetric accuracy and resulted in lower pass ratios and higher range shifts. Patient-specific differences highlighted the advantages and disadvantages of each method. For the set of patients, the DCNN created synthetic CTs with the highest image quality. Accurate proton dose calculations were achieved by both DCNN and DIR based sCTs. The AIC method resulted in lower image quality and dose calculation accuracy was reduced compared to the other methods.</description><subject>adaptive proton therapy</subject><subject>CBCT</subject><subject>Engineering</subject><subject>Engineering, Biomedical</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>neural networks</subject><subject>Radiology, Nuclear Medicine &amp; Medical Imaging</subject><subject>Science &amp; Technology</subject><subject>synthetic CT</subject><subject>Technology</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkE2L1TAUhoMoznV070qyU9A6Jx9N06UWv2DAzbgOaXLKZGib2qTK_ffm0pm7EnF1wuF53xMeQl4yeM9A6ysmFKtUreDK9o2v5SNyOK8ekwOAYFXL6vqCPEvpDoAxzeVTciE4k4JDcyBzF6fFriHFmcaBdh-7G9rbhJ6m45xvMQdHy2rCfBt9omkL2fYj0iGudFljLjEfE1JnR7eNNoc4Jxpmar1dcviFD1CpWu1yfE6eDHZM-OJ-XpIfnz_ddF-r6-9fvnUfrisnG5Urxy2gdiicBWkZE1IproRvhBQCmr5tpRxarFnbO6XbvnbW141ukXulnXbikrzZe8v5nxumbKaQHI6jnTFuyXDRSMGU5rqgsKNujSmtOJhlDZNdj4aBOVk2J6XmpNTslkvk1X371k_oz4EHrQXQO_Ab-zgkF3B2eMYAoBaMN4yXF7CuKD156-I25xJ9-__RQr_b6RAXcxe3dS5W__Xx13_Bl6kvlGkNtDUAN4sfxB_3C7RS</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>Thummerer, Adrian</creator><creator>Zaffino, Paolo</creator><creator>Meijers, Arturs</creator><creator>Marmitt, Gabriel Guterres</creator><creator>Seco, Joao</creator><creator>Steenbakkers, Roel J H M</creator><creator>Langendijk, Johannes A</creator><creator>Both, Stefan</creator><creator>Spadea, Maria F</creator><creator>Knopf, Antje C</creator><general>IOP Publishing</general><general>Iop Publishing Ltd</general><scope>O3W</scope><scope>TSCCA</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8486-7001</orcidid><orcidid>https://orcid.org/0000-0002-1874-5030</orcidid><orcidid>https://orcid.org/0000-0002-0219-0157</orcidid><orcidid>https://orcid.org/0000-0002-3647-6647</orcidid><orcidid>https://orcid.org/0000-0002-9458-2202</orcidid><orcidid>https://orcid.org/0000-0003-1083-372X</orcidid></search><sort><creationdate>20200507</creationdate><title>Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy</title><author>Thummerer, Adrian ; Zaffino, Paolo ; Meijers, Arturs ; Marmitt, Gabriel Guterres ; Seco, Joao ; Steenbakkers, Roel J H M ; Langendijk, Johannes A ; Both, Stefan ; Spadea, Maria F ; Knopf, Antje C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-c2a0e8ce3ca04a113466263d7343307b9944f9e519bc689b5cad5789e2d68c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adaptive proton therapy</topic><topic>CBCT</topic><topic>Engineering</topic><topic>Engineering, Biomedical</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>neural networks</topic><topic>Radiology, Nuclear Medicine &amp; Medical Imaging</topic><topic>Science &amp; Technology</topic><topic>synthetic CT</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thummerer, Adrian</creatorcontrib><creatorcontrib>Zaffino, Paolo</creatorcontrib><creatorcontrib>Meijers, Arturs</creatorcontrib><creatorcontrib>Marmitt, Gabriel Guterres</creatorcontrib><creatorcontrib>Seco, Joao</creatorcontrib><creatorcontrib>Steenbakkers, Roel J H M</creatorcontrib><creatorcontrib>Langendijk, Johannes A</creatorcontrib><creatorcontrib>Both, Stefan</creatorcontrib><creatorcontrib>Spadea, Maria F</creatorcontrib><creatorcontrib>Knopf, Antje C</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thummerer, Adrian</au><au>Zaffino, Paolo</au><au>Meijers, Arturs</au><au>Marmitt, Gabriel Guterres</au><au>Seco, Joao</au><au>Steenbakkers, Roel J H M</au><au>Langendijk, Johannes A</au><au>Both, Stefan</au><au>Spadea, Maria F</au><au>Knopf, Antje C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><stitle>PHYS MED BIOL</stitle><addtitle>Phys. Med. Biol</addtitle><date>2020-05-07</date><risdate>2020</risdate><volume>65</volume><issue>9</issue><spage>095002</spage><epage>095002</epage><pages>095002-095002</pages><artnum>095002</artnum><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>In-room imaging is a prerequisite for adaptive proton therapy. The use of onboard cone-beam computed tomography (CBCT) imaging, which is routinely acquired for patient position verification, can enable daily dose reconstructions and plan adaptation decisions. Image quality deficiencies though, hamper dose calculation accuracy and make corrections of CBCTs a necessity. This study compared three methods to correct CBCTs and create synthetic CTs that are suitable for proton dose calculations. CBCTs, planning CTs and repeated CTs (rCT) from 33 H&amp;N cancer patients were used to compare a deep convolutional neural network (DCNN), deformable image registration (DIR) and an analytical image-based correction method (AIC) for synthetic CT (sCT) generation. Image quality of sCTs was evaluated by comparison with a same-day rCT, using mean absolute error (MAE), mean error (ME), Dice similarity coefficient (DSC), structural non-uniformity (SNU) and signal/contrast-to-noise ratios (SNR/CNR) as metrics. Dosimetric accuracy was investigated in an intracranial setting by performing gamma analysis and calculating range shifts. Neural network-based sCTs resulted in the lowest MAE and ME (37/2 HU) and the highest DSC (0.96). While DIR and AIC generated images with a MAE of 44/77 HU, a ME of −8/1 HU and a DSC of 0.94/0.90. Gamma and range shift analysis showed almost no dosimetric difference between DCNN and DIR based sCTs. The lower image quality of AIC based sCTs affected dosimetric accuracy and resulted in lower pass ratios and higher range shifts. Patient-specific differences highlighted the advantages and disadvantages of each method. For the set of patients, the DCNN created synthetic CTs with the highest image quality. Accurate proton dose calculations were achieved by both DCNN and DIR based sCTs. The AIC method resulted in lower image quality and dose calculation accuracy was reduced compared to the other methods.</abstract><cop>BRISTOL</cop><pub>IOP Publishing</pub><pmid>32143207</pmid><doi>10.1088/1361-6560/ab7d54</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8486-7001</orcidid><orcidid>https://orcid.org/0000-0002-1874-5030</orcidid><orcidid>https://orcid.org/0000-0002-0219-0157</orcidid><orcidid>https://orcid.org/0000-0002-3647-6647</orcidid><orcidid>https://orcid.org/0000-0002-9458-2202</orcidid><orcidid>https://orcid.org/0000-0003-1083-372X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2020-05, Vol.65 (9), p.095002-095002, Article 095002
issn 0031-9155
1361-6560
language eng
recordid cdi_pubmed_primary_32143207
source IOP Publishing Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Institute of Physics (IOP) Journals - HEAL-Link
subjects adaptive proton therapy
CBCT
Engineering
Engineering, Biomedical
Life Sciences & Biomedicine
neural networks
Radiology, Nuclear Medicine & Medical Imaging
Science & Technology
synthetic CT
Technology
title Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20CBCT%20based%20synthetic%20CT%20methods%20suitable%20for%20proton%20dose%20calculations%20in%20adaptive%20proton%20therapy&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Thummerer,%20Adrian&rft.date=2020-05-07&rft.volume=65&rft.issue=9&rft.spage=095002&rft.epage=095002&rft.pages=095002-095002&rft.artnum=095002&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ab7d54&rft_dat=%3Cproquest_pubme%3E2374316828%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374316828&rft_id=info:pmid/32143207&rfr_iscdi=true