Air-gap-embedded robust hazy films to reduce the screen-door effect in virtual reality displays

We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect (SDE) in virtual reality (VR) displays. Oxygen plasma was treated with a polyethylene terephthalate substrate to produce wavelength-scale micropatterns. These micropatterns induce an effective haze, but it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-04, Vol.12 (16), p.875-8757
Hauptverfasser: Cho, Won Seok, Park, Jae Yong, Choi, Chung Sock, Cho, Sang-Hwan, Baek, Sangwon, Lee, Jong-Lam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8757
container_issue 16
container_start_page 875
container_title Nanoscale
container_volume 12
creator Cho, Won Seok
Park, Jae Yong
Choi, Chung Sock
Cho, Sang-Hwan
Baek, Sangwon
Lee, Jong-Lam
description We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect (SDE) in virtual reality (VR) displays. Oxygen plasma was treated with a polyethylene terephthalate substrate to produce wavelength-scale micropatterns. These micropatterns induce an effective haze, but it is easily destroyed by a very small external scratch. Such a problem could be solved by coating the patterns with poly(dimethylsiloxane) (PDMS). The viscosity of PDMS, controlled by the ratio of the base and curing agents, plays a key role in determining the size of air-gaps at the valleys of micropatterns. As the ratio of base agent increases to 40, the average haze abruptly increased from 0.9% to 88.6% in visible wavelengths, while the average total transmittance maintained was between 89.8 and 91.7%. The origin of air-gap-induced haze is confirmed by numerical simulations. The hazy film remarkably reduced the SDE of the VR display from 30.27% to 4.83% for red color, from 21.82% to 2.58% for green, and from 26.02% to 3.38% for blue, as the size of air-gaps increases from 0 to 406 ± 91 nm. No defects were found after 10 000 bending cycles with a bending radius of 3 mm. We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect in virtual reality displays.
doi_str_mv 10.1039/c9nr10615d
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32141458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374372018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-af2ca71694f709f0868de45490db680d6d0770ab2a999609e49ba9132e2b3db3</originalsourceid><addsrcrecordid>eNp90ctrGzEQBnBRGppXL723qOQSAtuOHtaujsZ5Qmgh-L5opVG8Zl-VdgPuXx-5Th3IIScJvh_D8A0hXxj8YCD0T6u7wECxmftAjjhIyITI-cf9X8lDchzjGkBpocQncig4k0zOiiNSzuuQPZohw7ZC59DR0FdTHOnK_N1QXzdtpGNPA7rJIh1XSKMNiF3m-j5Q9B7tSOuOPtVhnEyToGnqcUNdHYfGbOIpOfCmifj55T0hy-ur5eI2u_99c7eY32c2bTRmxnNrcqa09DloD4UqHMqZ1OAqVYBTDvIcTMWN1lqBRqkro5ngyCvhKnFCzndjh9D_mTCOZVtHi01jOuynWHKRy9QJsCLRszd03U-hS8slpZVgEvhWXeyUDX2MAX05hLo1YVMyKLetlwv96-Ff65cJf3sZOVUtuj39X3MCX3cgRLtPX8-W8u_v5eXgvHgGYeGRjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396314028</pqid></control><display><type>article</type><title>Air-gap-embedded robust hazy films to reduce the screen-door effect in virtual reality displays</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Cho, Won Seok ; Park, Jae Yong ; Choi, Chung Sock ; Cho, Sang-Hwan ; Baek, Sangwon ; Lee, Jong-Lam</creator><creatorcontrib>Cho, Won Seok ; Park, Jae Yong ; Choi, Chung Sock ; Cho, Sang-Hwan ; Baek, Sangwon ; Lee, Jong-Lam</creatorcontrib><description>We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect (SDE) in virtual reality (VR) displays. Oxygen plasma was treated with a polyethylene terephthalate substrate to produce wavelength-scale micropatterns. These micropatterns induce an effective haze, but it is easily destroyed by a very small external scratch. Such a problem could be solved by coating the patterns with poly(dimethylsiloxane) (PDMS). The viscosity of PDMS, controlled by the ratio of the base and curing agents, plays a key role in determining the size of air-gaps at the valleys of micropatterns. As the ratio of base agent increases to 40, the average haze abruptly increased from 0.9% to 88.6% in visible wavelengths, while the average total transmittance maintained was between 89.8 and 91.7%. The origin of air-gap-induced haze is confirmed by numerical simulations. The hazy film remarkably reduced the SDE of the VR display from 30.27% to 4.83% for red color, from 21.82% to 2.58% for green, and from 26.02% to 3.38% for blue, as the size of air-gaps increases from 0 to 406 ± 91 nm. No defects were found after 10 000 bending cycles with a bending radius of 3 mm. We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect in virtual reality displays.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr10615d</identifier><identifier>PMID: 32141458</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Air gaps ; Bend radius ; Computer simulation ; Curing agents ; Displays ; Haze ; Oxygen plasma ; Polydimethylsiloxane ; Polyethylene terephthalate ; Robustness (mathematics) ; Silicone resins ; Substrates ; Virtual reality</subject><ispartof>Nanoscale, 2020-04, Vol.12 (16), p.875-8757</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-af2ca71694f709f0868de45490db680d6d0770ab2a999609e49ba9132e2b3db3</citedby><cites>FETCH-LOGICAL-c363t-af2ca71694f709f0868de45490db680d6d0770ab2a999609e49ba9132e2b3db3</cites><orcidid>0000-0002-5044-1010 ; 0000-0003-3461-7802 ; 0000-0003-0292-0081 ; 0000-0003-4502-9758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32141458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Won Seok</creatorcontrib><creatorcontrib>Park, Jae Yong</creatorcontrib><creatorcontrib>Choi, Chung Sock</creatorcontrib><creatorcontrib>Cho, Sang-Hwan</creatorcontrib><creatorcontrib>Baek, Sangwon</creatorcontrib><creatorcontrib>Lee, Jong-Lam</creatorcontrib><title>Air-gap-embedded robust hazy films to reduce the screen-door effect in virtual reality displays</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect (SDE) in virtual reality (VR) displays. Oxygen plasma was treated with a polyethylene terephthalate substrate to produce wavelength-scale micropatterns. These micropatterns induce an effective haze, but it is easily destroyed by a very small external scratch. Such a problem could be solved by coating the patterns with poly(dimethylsiloxane) (PDMS). The viscosity of PDMS, controlled by the ratio of the base and curing agents, plays a key role in determining the size of air-gaps at the valleys of micropatterns. As the ratio of base agent increases to 40, the average haze abruptly increased from 0.9% to 88.6% in visible wavelengths, while the average total transmittance maintained was between 89.8 and 91.7%. The origin of air-gap-induced haze is confirmed by numerical simulations. The hazy film remarkably reduced the SDE of the VR display from 30.27% to 4.83% for red color, from 21.82% to 2.58% for green, and from 26.02% to 3.38% for blue, as the size of air-gaps increases from 0 to 406 ± 91 nm. No defects were found after 10 000 bending cycles with a bending radius of 3 mm. We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect in virtual reality displays.</description><subject>Air gaps</subject><subject>Bend radius</subject><subject>Computer simulation</subject><subject>Curing agents</subject><subject>Displays</subject><subject>Haze</subject><subject>Oxygen plasma</subject><subject>Polydimethylsiloxane</subject><subject>Polyethylene terephthalate</subject><subject>Robustness (mathematics)</subject><subject>Silicone resins</subject><subject>Substrates</subject><subject>Virtual reality</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90ctrGzEQBnBRGppXL723qOQSAtuOHtaujsZ5Qmgh-L5opVG8Zl-VdgPuXx-5Th3IIScJvh_D8A0hXxj8YCD0T6u7wECxmftAjjhIyITI-cf9X8lDchzjGkBpocQncig4k0zOiiNSzuuQPZohw7ZC59DR0FdTHOnK_N1QXzdtpGNPA7rJIh1XSKMNiF3m-j5Q9B7tSOuOPtVhnEyToGnqcUNdHYfGbOIpOfCmifj55T0hy-ur5eI2u_99c7eY32c2bTRmxnNrcqa09DloD4UqHMqZ1OAqVYBTDvIcTMWN1lqBRqkro5ngyCvhKnFCzndjh9D_mTCOZVtHi01jOuynWHKRy9QJsCLRszd03U-hS8slpZVgEvhWXeyUDX2MAX05hLo1YVMyKLetlwv96-Ff65cJf3sZOVUtuj39X3MCX3cgRLtPX8-W8u_v5eXgvHgGYeGRjA</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>Cho, Won Seok</creator><creator>Park, Jae Yong</creator><creator>Choi, Chung Sock</creator><creator>Cho, Sang-Hwan</creator><creator>Baek, Sangwon</creator><creator>Lee, Jong-Lam</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5044-1010</orcidid><orcidid>https://orcid.org/0000-0003-3461-7802</orcidid><orcidid>https://orcid.org/0000-0003-0292-0081</orcidid><orcidid>https://orcid.org/0000-0003-4502-9758</orcidid></search><sort><creationdate>20200428</creationdate><title>Air-gap-embedded robust hazy films to reduce the screen-door effect in virtual reality displays</title><author>Cho, Won Seok ; Park, Jae Yong ; Choi, Chung Sock ; Cho, Sang-Hwan ; Baek, Sangwon ; Lee, Jong-Lam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-af2ca71694f709f0868de45490db680d6d0770ab2a999609e49ba9132e2b3db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air gaps</topic><topic>Bend radius</topic><topic>Computer simulation</topic><topic>Curing agents</topic><topic>Displays</topic><topic>Haze</topic><topic>Oxygen plasma</topic><topic>Polydimethylsiloxane</topic><topic>Polyethylene terephthalate</topic><topic>Robustness (mathematics)</topic><topic>Silicone resins</topic><topic>Substrates</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Won Seok</creatorcontrib><creatorcontrib>Park, Jae Yong</creatorcontrib><creatorcontrib>Choi, Chung Sock</creatorcontrib><creatorcontrib>Cho, Sang-Hwan</creatorcontrib><creatorcontrib>Baek, Sangwon</creatorcontrib><creatorcontrib>Lee, Jong-Lam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Won Seok</au><au>Park, Jae Yong</au><au>Choi, Chung Sock</au><au>Cho, Sang-Hwan</au><au>Baek, Sangwon</au><au>Lee, Jong-Lam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-gap-embedded robust hazy films to reduce the screen-door effect in virtual reality displays</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2020-04-28</date><risdate>2020</risdate><volume>12</volume><issue>16</issue><spage>875</spage><epage>8757</epage><pages>875-8757</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect (SDE) in virtual reality (VR) displays. Oxygen plasma was treated with a polyethylene terephthalate substrate to produce wavelength-scale micropatterns. These micropatterns induce an effective haze, but it is easily destroyed by a very small external scratch. Such a problem could be solved by coating the patterns with poly(dimethylsiloxane) (PDMS). The viscosity of PDMS, controlled by the ratio of the base and curing agents, plays a key role in determining the size of air-gaps at the valleys of micropatterns. As the ratio of base agent increases to 40, the average haze abruptly increased from 0.9% to 88.6% in visible wavelengths, while the average total transmittance maintained was between 89.8 and 91.7%. The origin of air-gap-induced haze is confirmed by numerical simulations. The hazy film remarkably reduced the SDE of the VR display from 30.27% to 4.83% for red color, from 21.82% to 2.58% for green, and from 26.02% to 3.38% for blue, as the size of air-gaps increases from 0 to 406 ± 91 nm. No defects were found after 10 000 bending cycles with a bending radius of 3 mm. We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect in virtual reality displays.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32141458</pmid><doi>10.1039/c9nr10615d</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5044-1010</orcidid><orcidid>https://orcid.org/0000-0003-3461-7802</orcidid><orcidid>https://orcid.org/0000-0003-0292-0081</orcidid><orcidid>https://orcid.org/0000-0003-4502-9758</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-04, Vol.12 (16), p.875-8757
issn 2040-3364
2040-3372
language eng
recordid cdi_pubmed_primary_32141458
source Royal Society Of Chemistry Journals 2008-
subjects Air gaps
Bend radius
Computer simulation
Curing agents
Displays
Haze
Oxygen plasma
Polydimethylsiloxane
Polyethylene terephthalate
Robustness (mathematics)
Silicone resins
Substrates
Virtual reality
title Air-gap-embedded robust hazy films to reduce the screen-door effect in virtual reality displays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-gap-embedded%20robust%20hazy%20films%20to%20reduce%20the%20screen-door%20effect%20in%20virtual%20reality%20displays&rft.jtitle=Nanoscale&rft.au=Cho,%20Won%20Seok&rft.date=2020-04-28&rft.volume=12&rft.issue=16&rft.spage=875&rft.epage=8757&rft.pages=875-8757&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr10615d&rft_dat=%3Cproquest_pubme%3E2374372018%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396314028&rft_id=info:pmid/32141458&rfr_iscdi=true