Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells

To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2020-03, Vol.31 (3), p.29, Article 29
Hauptverfasser: Wang, Lili, Yan, Jia, Hu, Xiaokun, Zhu, Xinchen, Hu, Shuying, Qian, Jun, Zhang, Feimin, Liu, Mei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 29
container_title Journal of materials science. Materials in medicine
container_volume 31
creator Wang, Lili
Yan, Jia
Hu, Xiaokun
Zhu, Xinchen
Hu, Shuying
Qian, Jun
Zhang, Feimin
Liu, Mei
description To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical properties. We rigorously compared the physicochemical properties and bioactivities of these two types of bioactive glass. Specifically, we measured the size, surface morphology, concentration of ionic-dissolution products, bioactivity, and biological effects of two groups of bioactive glass on rat bone marrow mesenchymal stem cells (rBMSCs) and evaluate their effect on proliferation and osteogenic differentiation of rBMSCs in vitro. We observed that spherical nano-bioactive glass (SNBG) was spherical with smooth boundary, while the radial spherical nano-bioactive glass (RSNBG) had radial pore on the surface of particle boundary. When the two materials were immersed in simulated body fluid for 24 h, RSNBG produced more and denser hydroxyapatite carbonate than SNBG. The concentration of Ca and Si ions in RSNBG 24 h extract is higher than that of SNBG, while the concentration of P ions is lower. Proliferation, alkaline phosphatase (ALP) activity, intracellular Ca ion concentrations defined as the number of mineralized nodules produced, and the expression of osteogenic genes were significantly higher in rBMSCs co-cultured with 50 µg/mL RSNBG than SNBG. Overall, these results validated our hypothesis that RSNBG can provide better benefit than SNBG for inducing proliferation and osteogenic differentiation in rBMSCs, in turn suggested the feasibility of this RSNBG in further studies and utilization toward the ends of improved bone repair effectiveness.
doi_str_mv 10.1007/s10856-020-06368-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32140885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371560392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a2b66f1e10f2fc9e78bc74d34b0de2055bcf53a3b1fbb67d55368709911846ba3</originalsourceid><addsrcrecordid>eNqNkc2OFCEURonROO3oC7gwJC5N6QWKKmppOuNPMokbXVeAunQzqYIWaDvzDPPS0lPjuDOuIOF8H5cDIa8ZvGcA_YfMQMmuAQ4NdKJTjXpCNkz2ommVUE_JBgbZN60UcEFe5HwDAO0g5XNyIThrQSm5IXdXzqEtNDoadIjZ6hmp8VHb4n8h3c06Z3ryZU-TnryeaT7sMfmK0YNOxdsZM42Bxlww7jB4SydfKxOG4nXx5yNXs4WaGJAuOqV4ogtmDHZ_u5wLCy7U4jznl-SZ03PGVw_rJfnx6er79ktz_e3z1-3H68a2jJdGc9N1jiEDx50dsFfG9u0kWgMTcpDSWCeFFoY5Y7p-krK66WEYGFNtZ7S4JG_X3kOKP4-Yy3gTjynUK0cueiY7EAOvFF8pm2LOCd14SL7OfzsyGM_-x9X_WP2P9_5HVUNvHqqPZsHpMfJHeAXUCpzQRJetrx7wEas_JNkAla47YFtf7hVu4zGUGn33_9FKi5XOlQg7TH8f-Y_5fwNG77P7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371560392</pqid></control><display><type>article</type><title>Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Wang, Lili ; Yan, Jia ; Hu, Xiaokun ; Zhu, Xinchen ; Hu, Shuying ; Qian, Jun ; Zhang, Feimin ; Liu, Mei</creator><creatorcontrib>Wang, Lili ; Yan, Jia ; Hu, Xiaokun ; Zhu, Xinchen ; Hu, Shuying ; Qian, Jun ; Zhang, Feimin ; Liu, Mei</creatorcontrib><description>To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical properties. We rigorously compared the physicochemical properties and bioactivities of these two types of bioactive glass. Specifically, we measured the size, surface morphology, concentration of ionic-dissolution products, bioactivity, and biological effects of two groups of bioactive glass on rat bone marrow mesenchymal stem cells (rBMSCs) and evaluate their effect on proliferation and osteogenic differentiation of rBMSCs in vitro. We observed that spherical nano-bioactive glass (SNBG) was spherical with smooth boundary, while the radial spherical nano-bioactive glass (RSNBG) had radial pore on the surface of particle boundary. When the two materials were immersed in simulated body fluid for 24 h, RSNBG produced more and denser hydroxyapatite carbonate than SNBG. The concentration of Ca and Si ions in RSNBG 24 h extract is higher than that of SNBG, while the concentration of P ions is lower. Proliferation, alkaline phosphatase (ALP) activity, intracellular Ca ion concentrations defined as the number of mineralized nodules produced, and the expression of osteogenic genes were significantly higher in rBMSCs co-cultured with 50 µg/mL RSNBG than SNBG. Overall, these results validated our hypothesis that RSNBG can provide better benefit than SNBG for inducing proliferation and osteogenic differentiation in rBMSCs, in turn suggested the feasibility of this RSNBG in further studies and utilization toward the ends of improved bone repair effectiveness.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-020-06368-8</identifier><identifier>PMID: 32140885</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alkaline phosphatase ; Animals ; Biocompatible Materials - chemistry ; Bioglass ; Biological activity ; Biological effects ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Body fluids ; Bone healing ; Bone marrow ; Bone Marrow Cells - drug effects ; Calcium - chemistry ; Calcium ions ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Ceramics ; Chemistry and Materials Science ; Composites ; Differentiation (biology) ; Engineering ; Engineering and Nano-engineering Approaches for Medical Devices ; Engineering, Biomedical ; Feasibility ; Gene expression ; Glass ; Glass - chemistry ; Hydroxyapatite ; In vitro methods and tests ; Ions ; Materials Science ; Materials Science, Biomaterials ; Mesenchymal stem cells ; Mesenchymal Stem Cells - drug effects ; Morphology ; Nanoparticles - chemistry ; Nanotechnology ; Natural Materials ; Nodules ; Osteogenesis - drug effects ; Particle Size ; Physicochemical properties ; Polymer Sciences ; Rats ; Rats, Sprague-Dawley ; Regenerative Medicine/Tissue Engineering ; Repair ; Science &amp; Technology ; Smooth boundaries ; Stem cell transplantation ; Stem cells ; Surface Properties ; Surfaces and Interfaces ; Surgical implants ; Technology ; Thin Films ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of materials science. Materials in medicine, 2020-03, Vol.31 (3), p.29, Article 29</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Journal of Materials Science: Materials in Medicine is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000519032100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c412t-a2b66f1e10f2fc9e78bc74d34b0de2055bcf53a3b1fbb67d55368709911846ba3</citedby><cites>FETCH-LOGICAL-c412t-a2b66f1e10f2fc9e78bc74d34b0de2055bcf53a3b1fbb67d55368709911846ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-020-06368-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-020-06368-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,28257,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32140885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Yan, Jia</creatorcontrib><creatorcontrib>Hu, Xiaokun</creatorcontrib><creatorcontrib>Zhu, Xinchen</creatorcontrib><creatorcontrib>Hu, Shuying</creatorcontrib><creatorcontrib>Qian, Jun</creatorcontrib><creatorcontrib>Zhang, Feimin</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><title>Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J MATER SCI-MATER M</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical properties. We rigorously compared the physicochemical properties and bioactivities of these two types of bioactive glass. Specifically, we measured the size, surface morphology, concentration of ionic-dissolution products, bioactivity, and biological effects of two groups of bioactive glass on rat bone marrow mesenchymal stem cells (rBMSCs) and evaluate their effect on proliferation and osteogenic differentiation of rBMSCs in vitro. We observed that spherical nano-bioactive glass (SNBG) was spherical with smooth boundary, while the radial spherical nano-bioactive glass (RSNBG) had radial pore on the surface of particle boundary. When the two materials were immersed in simulated body fluid for 24 h, RSNBG produced more and denser hydroxyapatite carbonate than SNBG. The concentration of Ca and Si ions in RSNBG 24 h extract is higher than that of SNBG, while the concentration of P ions is lower. Proliferation, alkaline phosphatase (ALP) activity, intracellular Ca ion concentrations defined as the number of mineralized nodules produced, and the expression of osteogenic genes were significantly higher in rBMSCs co-cultured with 50 µg/mL RSNBG than SNBG. Overall, these results validated our hypothesis that RSNBG can provide better benefit than SNBG for inducing proliferation and osteogenic differentiation in rBMSCs, in turn suggested the feasibility of this RSNBG in further studies and utilization toward the ends of improved bone repair effectiveness.</description><subject>Alkaline phosphatase</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biological effects</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Bone healing</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - drug effects</subject><subject>Calcium - chemistry</subject><subject>Calcium ions</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Differentiation (biology)</subject><subject>Engineering</subject><subject>Engineering and Nano-engineering Approaches for Medical Devices</subject><subject>Engineering, Biomedical</subject><subject>Feasibility</subject><subject>Gene expression</subject><subject>Glass</subject><subject>Glass - chemistry</subject><subject>Hydroxyapatite</subject><subject>In vitro methods and tests</subject><subject>Ions</subject><subject>Materials Science</subject><subject>Materials Science, Biomaterials</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Morphology</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Nodules</subject><subject>Osteogenesis - drug effects</subject><subject>Particle Size</subject><subject>Physicochemical properties</subject><subject>Polymer Sciences</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Repair</subject><subject>Science &amp; Technology</subject><subject>Smooth boundaries</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Surface Properties</subject><subject>Surfaces and Interfaces</subject><subject>Surgical implants</subject><subject>Technology</subject><subject>Thin Films</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc2OFCEURonROO3oC7gwJC5N6QWKKmppOuNPMokbXVeAunQzqYIWaDvzDPPS0lPjuDOuIOF8H5cDIa8ZvGcA_YfMQMmuAQ4NdKJTjXpCNkz2ommVUE_JBgbZN60UcEFe5HwDAO0g5XNyIThrQSm5IXdXzqEtNDoadIjZ6hmp8VHb4n8h3c06Z3ryZU-TnryeaT7sMfmK0YNOxdsZM42Bxlww7jB4SydfKxOG4nXx5yNXs4WaGJAuOqV4ogtmDHZ_u5wLCy7U4jznl-SZ03PGVw_rJfnx6er79ktz_e3z1-3H68a2jJdGc9N1jiEDx50dsFfG9u0kWgMTcpDSWCeFFoY5Y7p-krK66WEYGFNtZ7S4JG_X3kOKP4-Yy3gTjynUK0cueiY7EAOvFF8pm2LOCd14SL7OfzsyGM_-x9X_WP2P9_5HVUNvHqqPZsHpMfJHeAXUCpzQRJetrx7wEas_JNkAla47YFtf7hVu4zGUGn33_9FKi5XOlQg7TH8f-Y_5fwNG77P7</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>Wang, Lili</creator><creator>Yan, Jia</creator><creator>Hu, Xiaokun</creator><creator>Zhu, Xinchen</creator><creator>Hu, Shuying</creator><creator>Qian, Jun</creator><creator>Zhang, Feimin</creator><creator>Liu, Mei</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20200305</creationdate><title>Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells</title><author>Wang, Lili ; Yan, Jia ; Hu, Xiaokun ; Zhu, Xinchen ; Hu, Shuying ; Qian, Jun ; Zhang, Feimin ; Liu, Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a2b66f1e10f2fc9e78bc74d34b0de2055bcf53a3b1fbb67d55368709911846ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkaline phosphatase</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biological effects</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Bone healing</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - drug effects</topic><topic>Calcium - chemistry</topic><topic>Calcium ions</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Differentiation (biology)</topic><topic>Engineering</topic><topic>Engineering and Nano-engineering Approaches for Medical Devices</topic><topic>Engineering, Biomedical</topic><topic>Feasibility</topic><topic>Gene expression</topic><topic>Glass</topic><topic>Glass - chemistry</topic><topic>Hydroxyapatite</topic><topic>In vitro methods and tests</topic><topic>Ions</topic><topic>Materials Science</topic><topic>Materials Science, Biomaterials</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Morphology</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Nodules</topic><topic>Osteogenesis - drug effects</topic><topic>Particle Size</topic><topic>Physicochemical properties</topic><topic>Polymer Sciences</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Repair</topic><topic>Science &amp; Technology</topic><topic>Smooth boundaries</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Surface Properties</topic><topic>Surfaces and Interfaces</topic><topic>Surgical implants</topic><topic>Technology</topic><topic>Thin Films</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Yan, Jia</creatorcontrib><creatorcontrib>Hu, Xiaokun</creatorcontrib><creatorcontrib>Zhu, Xinchen</creatorcontrib><creatorcontrib>Hu, Shuying</creatorcontrib><creatorcontrib>Qian, Jun</creatorcontrib><creatorcontrib>Zhang, Feimin</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lili</au><au>Yan, Jia</au><au>Hu, Xiaokun</au><au>Zhu, Xinchen</au><au>Hu, Shuying</au><au>Qian, Jun</au><au>Zhang, Feimin</au><au>Liu, Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><stitle>J MATER SCI-MATER M</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2020-03-05</date><risdate>2020</risdate><volume>31</volume><issue>3</issue><spage>29</spage><pages>29-</pages><artnum>29</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical properties. We rigorously compared the physicochemical properties and bioactivities of these two types of bioactive glass. Specifically, we measured the size, surface morphology, concentration of ionic-dissolution products, bioactivity, and biological effects of two groups of bioactive glass on rat bone marrow mesenchymal stem cells (rBMSCs) and evaluate their effect on proliferation and osteogenic differentiation of rBMSCs in vitro. We observed that spherical nano-bioactive glass (SNBG) was spherical with smooth boundary, while the radial spherical nano-bioactive glass (RSNBG) had radial pore on the surface of particle boundary. When the two materials were immersed in simulated body fluid for 24 h, RSNBG produced more and denser hydroxyapatite carbonate than SNBG. The concentration of Ca and Si ions in RSNBG 24 h extract is higher than that of SNBG, while the concentration of P ions is lower. Proliferation, alkaline phosphatase (ALP) activity, intracellular Ca ion concentrations defined as the number of mineralized nodules produced, and the expression of osteogenic genes were significantly higher in rBMSCs co-cultured with 50 µg/mL RSNBG than SNBG. Overall, these results validated our hypothesis that RSNBG can provide better benefit than SNBG for inducing proliferation and osteogenic differentiation in rBMSCs, in turn suggested the feasibility of this RSNBG in further studies and utilization toward the ends of improved bone repair effectiveness.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32140885</pmid><doi>10.1007/s10856-020-06368-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2020-03, Vol.31 (3), p.29, Article 29
issn 0957-4530
1573-4838
language eng
recordid cdi_pubmed_primary_32140885
source MEDLINE; SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Alkaline phosphatase
Animals
Biocompatible Materials - chemistry
Bioglass
Biological activity
Biological effects
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical materials
Body fluids
Bone healing
Bone marrow
Bone Marrow Cells - drug effects
Calcium - chemistry
Calcium ions
Cell Differentiation
Cell Proliferation
Cells, Cultured
Ceramics
Chemistry and Materials Science
Composites
Differentiation (biology)
Engineering
Engineering and Nano-engineering Approaches for Medical Devices
Engineering, Biomedical
Feasibility
Gene expression
Glass
Glass - chemistry
Hydroxyapatite
In vitro methods and tests
Ions
Materials Science
Materials Science, Biomaterials
Mesenchymal stem cells
Mesenchymal Stem Cells - drug effects
Morphology
Nanoparticles - chemistry
Nanotechnology
Natural Materials
Nodules
Osteogenesis - drug effects
Particle Size
Physicochemical properties
Polymer Sciences
Rats
Rats, Sprague-Dawley
Regenerative Medicine/Tissue Engineering
Repair
Science & Technology
Smooth boundaries
Stem cell transplantation
Stem cells
Surface Properties
Surfaces and Interfaces
Surgical implants
Technology
Thin Films
Tissue Scaffolds - chemistry
title Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T20%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20nanoscale%20bioactive%20glass%20with%20radial%20spherical%20particles%20on%20osteogenic%20differentiation%20of%20rat%20bone%20marrow%20mesenchymal%20stem%20cells&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Wang,%20Lili&rft.date=2020-03-05&rft.volume=31&rft.issue=3&rft.spage=29&rft.pages=29-&rft.artnum=29&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-020-06368-8&rft_dat=%3Cproquest_pubme%3E2371560392%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371560392&rft_id=info:pmid/32140885&rfr_iscdi=true