Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells
To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical prop...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2020-03, Vol.31 (3), p.29, Article 29 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 29 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 31 |
creator | Wang, Lili Yan, Jia Hu, Xiaokun Zhu, Xinchen Hu, Shuying Qian, Jun Zhang, Feimin Liu, Mei |
description | To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical properties. We rigorously compared the physicochemical properties and bioactivities of these two types of bioactive glass. Specifically, we measured the size, surface morphology, concentration of ionic-dissolution products, bioactivity, and biological effects of two groups of bioactive glass on rat bone marrow mesenchymal stem cells (rBMSCs) and evaluate their effect on proliferation and osteogenic differentiation of rBMSCs in vitro. We observed that spherical nano-bioactive glass (SNBG) was spherical with smooth boundary, while the radial spherical nano-bioactive glass (RSNBG) had radial pore on the surface of particle boundary. When the two materials were immersed in simulated body fluid for 24 h, RSNBG produced more and denser hydroxyapatite carbonate than SNBG. The concentration of Ca and Si ions in RSNBG 24 h extract is higher than that of SNBG, while the concentration of P ions is lower. Proliferation, alkaline phosphatase (ALP) activity, intracellular Ca ion concentrations defined as the number of mineralized nodules produced, and the expression of osteogenic genes were significantly higher in rBMSCs co-cultured with 50 µg/mL RSNBG than SNBG. Overall, these results validated our hypothesis that RSNBG can provide better benefit than SNBG for inducing proliferation and osteogenic differentiation in rBMSCs, in turn suggested the feasibility of this RSNBG in further studies and utilization toward the ends of improved bone repair effectiveness. |
doi_str_mv | 10.1007/s10856-020-06368-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32140885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371560392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a2b66f1e10f2fc9e78bc74d34b0de2055bcf53a3b1fbb67d55368709911846ba3</originalsourceid><addsrcrecordid>eNqNkc2OFCEURonROO3oC7gwJC5N6QWKKmppOuNPMokbXVeAunQzqYIWaDvzDPPS0lPjuDOuIOF8H5cDIa8ZvGcA_YfMQMmuAQ4NdKJTjXpCNkz2ommVUE_JBgbZN60UcEFe5HwDAO0g5XNyIThrQSm5IXdXzqEtNDoadIjZ6hmp8VHb4n8h3c06Z3ryZU-TnryeaT7sMfmK0YNOxdsZM42Bxlww7jB4SydfKxOG4nXx5yNXs4WaGJAuOqV4ogtmDHZ_u5wLCy7U4jznl-SZ03PGVw_rJfnx6er79ktz_e3z1-3H68a2jJdGc9N1jiEDx50dsFfG9u0kWgMTcpDSWCeFFoY5Y7p-krK66WEYGFNtZ7S4JG_X3kOKP4-Yy3gTjynUK0cueiY7EAOvFF8pm2LOCd14SL7OfzsyGM_-x9X_WP2P9_5HVUNvHqqPZsHpMfJHeAXUCpzQRJetrx7wEas_JNkAla47YFtf7hVu4zGUGn33_9FKi5XOlQg7TH8f-Y_5fwNG77P7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371560392</pqid></control><display><type>article</type><title>Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Wang, Lili ; Yan, Jia ; Hu, Xiaokun ; Zhu, Xinchen ; Hu, Shuying ; Qian, Jun ; Zhang, Feimin ; Liu, Mei</creator><creatorcontrib>Wang, Lili ; Yan, Jia ; Hu, Xiaokun ; Zhu, Xinchen ; Hu, Shuying ; Qian, Jun ; Zhang, Feimin ; Liu, Mei</creatorcontrib><description>To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical properties. We rigorously compared the physicochemical properties and bioactivities of these two types of bioactive glass. Specifically, we measured the size, surface morphology, concentration of ionic-dissolution products, bioactivity, and biological effects of two groups of bioactive glass on rat bone marrow mesenchymal stem cells (rBMSCs) and evaluate their effect on proliferation and osteogenic differentiation of rBMSCs in vitro. We observed that spherical nano-bioactive glass (SNBG) was spherical with smooth boundary, while the radial spherical nano-bioactive glass (RSNBG) had radial pore on the surface of particle boundary. When the two materials were immersed in simulated body fluid for 24 h, RSNBG produced more and denser hydroxyapatite carbonate than SNBG. The concentration of Ca and Si ions in RSNBG 24 h extract is higher than that of SNBG, while the concentration of P ions is lower. Proliferation, alkaline phosphatase (ALP) activity, intracellular Ca ion concentrations defined as the number of mineralized nodules produced, and the expression of osteogenic genes were significantly higher in rBMSCs co-cultured with 50 µg/mL RSNBG than SNBG. Overall, these results validated our hypothesis that RSNBG can provide better benefit than SNBG for inducing proliferation and osteogenic differentiation in rBMSCs, in turn suggested the feasibility of this RSNBG in further studies and utilization toward the ends of improved bone repair effectiveness.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-020-06368-8</identifier><identifier>PMID: 32140885</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alkaline phosphatase ; Animals ; Biocompatible Materials - chemistry ; Bioglass ; Biological activity ; Biological effects ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Body fluids ; Bone healing ; Bone marrow ; Bone Marrow Cells - drug effects ; Calcium - chemistry ; Calcium ions ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Ceramics ; Chemistry and Materials Science ; Composites ; Differentiation (biology) ; Engineering ; Engineering and Nano-engineering Approaches for Medical Devices ; Engineering, Biomedical ; Feasibility ; Gene expression ; Glass ; Glass - chemistry ; Hydroxyapatite ; In vitro methods and tests ; Ions ; Materials Science ; Materials Science, Biomaterials ; Mesenchymal stem cells ; Mesenchymal Stem Cells - drug effects ; Morphology ; Nanoparticles - chemistry ; Nanotechnology ; Natural Materials ; Nodules ; Osteogenesis - drug effects ; Particle Size ; Physicochemical properties ; Polymer Sciences ; Rats ; Rats, Sprague-Dawley ; Regenerative Medicine/Tissue Engineering ; Repair ; Science & Technology ; Smooth boundaries ; Stem cell transplantation ; Stem cells ; Surface Properties ; Surfaces and Interfaces ; Surgical implants ; Technology ; Thin Films ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of materials science. Materials in medicine, 2020-03, Vol.31 (3), p.29, Article 29</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Journal of Materials Science: Materials in Medicine is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000519032100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c412t-a2b66f1e10f2fc9e78bc74d34b0de2055bcf53a3b1fbb67d55368709911846ba3</citedby><cites>FETCH-LOGICAL-c412t-a2b66f1e10f2fc9e78bc74d34b0de2055bcf53a3b1fbb67d55368709911846ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-020-06368-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-020-06368-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,28257,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32140885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Yan, Jia</creatorcontrib><creatorcontrib>Hu, Xiaokun</creatorcontrib><creatorcontrib>Zhu, Xinchen</creatorcontrib><creatorcontrib>Hu, Shuying</creatorcontrib><creatorcontrib>Qian, Jun</creatorcontrib><creatorcontrib>Zhang, Feimin</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><title>Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J MATER SCI-MATER M</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical properties. We rigorously compared the physicochemical properties and bioactivities of these two types of bioactive glass. Specifically, we measured the size, surface morphology, concentration of ionic-dissolution products, bioactivity, and biological effects of two groups of bioactive glass on rat bone marrow mesenchymal stem cells (rBMSCs) and evaluate their effect on proliferation and osteogenic differentiation of rBMSCs in vitro. We observed that spherical nano-bioactive glass (SNBG) was spherical with smooth boundary, while the radial spherical nano-bioactive glass (RSNBG) had radial pore on the surface of particle boundary. When the two materials were immersed in simulated body fluid for 24 h, RSNBG produced more and denser hydroxyapatite carbonate than SNBG. The concentration of Ca and Si ions in RSNBG 24 h extract is higher than that of SNBG, while the concentration of P ions is lower. Proliferation, alkaline phosphatase (ALP) activity, intracellular Ca ion concentrations defined as the number of mineralized nodules produced, and the expression of osteogenic genes were significantly higher in rBMSCs co-cultured with 50 µg/mL RSNBG than SNBG. Overall, these results validated our hypothesis that RSNBG can provide better benefit than SNBG for inducing proliferation and osteogenic differentiation in rBMSCs, in turn suggested the feasibility of this RSNBG in further studies and utilization toward the ends of improved bone repair effectiveness.</description><subject>Alkaline phosphatase</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biological effects</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Bone healing</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - drug effects</subject><subject>Calcium - chemistry</subject><subject>Calcium ions</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Differentiation (biology)</subject><subject>Engineering</subject><subject>Engineering and Nano-engineering Approaches for Medical Devices</subject><subject>Engineering, Biomedical</subject><subject>Feasibility</subject><subject>Gene expression</subject><subject>Glass</subject><subject>Glass - chemistry</subject><subject>Hydroxyapatite</subject><subject>In vitro methods and tests</subject><subject>Ions</subject><subject>Materials Science</subject><subject>Materials Science, Biomaterials</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Morphology</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Nodules</subject><subject>Osteogenesis - drug effects</subject><subject>Particle Size</subject><subject>Physicochemical properties</subject><subject>Polymer Sciences</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Repair</subject><subject>Science & Technology</subject><subject>Smooth boundaries</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Surface Properties</subject><subject>Surfaces and Interfaces</subject><subject>Surgical implants</subject><subject>Technology</subject><subject>Thin Films</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc2OFCEURonROO3oC7gwJC5N6QWKKmppOuNPMokbXVeAunQzqYIWaDvzDPPS0lPjuDOuIOF8H5cDIa8ZvGcA_YfMQMmuAQ4NdKJTjXpCNkz2ommVUE_JBgbZN60UcEFe5HwDAO0g5XNyIThrQSm5IXdXzqEtNDoadIjZ6hmp8VHb4n8h3c06Z3ryZU-TnryeaT7sMfmK0YNOxdsZM42Bxlww7jB4SydfKxOG4nXx5yNXs4WaGJAuOqV4ogtmDHZ_u5wLCy7U4jznl-SZ03PGVw_rJfnx6er79ktz_e3z1-3H68a2jJdGc9N1jiEDx50dsFfG9u0kWgMTcpDSWCeFFoY5Y7p-krK66WEYGFNtZ7S4JG_X3kOKP4-Yy3gTjynUK0cueiY7EAOvFF8pm2LOCd14SL7OfzsyGM_-x9X_WP2P9_5HVUNvHqqPZsHpMfJHeAXUCpzQRJetrx7wEas_JNkAla47YFtf7hVu4zGUGn33_9FKi5XOlQg7TH8f-Y_5fwNG77P7</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>Wang, Lili</creator><creator>Yan, Jia</creator><creator>Hu, Xiaokun</creator><creator>Zhu, Xinchen</creator><creator>Hu, Shuying</creator><creator>Qian, Jun</creator><creator>Zhang, Feimin</creator><creator>Liu, Mei</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20200305</creationdate><title>Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells</title><author>Wang, Lili ; Yan, Jia ; Hu, Xiaokun ; Zhu, Xinchen ; Hu, Shuying ; Qian, Jun ; Zhang, Feimin ; Liu, Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a2b66f1e10f2fc9e78bc74d34b0de2055bcf53a3b1fbb67d55368709911846ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkaline phosphatase</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biological effects</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Bone healing</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - drug effects</topic><topic>Calcium - chemistry</topic><topic>Calcium ions</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Differentiation (biology)</topic><topic>Engineering</topic><topic>Engineering and Nano-engineering Approaches for Medical Devices</topic><topic>Engineering, Biomedical</topic><topic>Feasibility</topic><topic>Gene expression</topic><topic>Glass</topic><topic>Glass - chemistry</topic><topic>Hydroxyapatite</topic><topic>In vitro methods and tests</topic><topic>Ions</topic><topic>Materials Science</topic><topic>Materials Science, Biomaterials</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Morphology</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Nodules</topic><topic>Osteogenesis - drug effects</topic><topic>Particle Size</topic><topic>Physicochemical properties</topic><topic>Polymer Sciences</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Repair</topic><topic>Science & Technology</topic><topic>Smooth boundaries</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Surface Properties</topic><topic>Surfaces and Interfaces</topic><topic>Surgical implants</topic><topic>Technology</topic><topic>Thin Films</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Yan, Jia</creatorcontrib><creatorcontrib>Hu, Xiaokun</creatorcontrib><creatorcontrib>Zhu, Xinchen</creatorcontrib><creatorcontrib>Hu, Shuying</creatorcontrib><creatorcontrib>Qian, Jun</creatorcontrib><creatorcontrib>Zhang, Feimin</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lili</au><au>Yan, Jia</au><au>Hu, Xiaokun</au><au>Zhu, Xinchen</au><au>Hu, Shuying</au><au>Qian, Jun</au><au>Zhang, Feimin</au><au>Liu, Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><stitle>J MATER SCI-MATER M</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2020-03-05</date><risdate>2020</risdate><volume>31</volume><issue>3</issue><spage>29</spage><pages>29-</pages><artnum>29</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical properties. We rigorously compared the physicochemical properties and bioactivities of these two types of bioactive glass. Specifically, we measured the size, surface morphology, concentration of ionic-dissolution products, bioactivity, and biological effects of two groups of bioactive glass on rat bone marrow mesenchymal stem cells (rBMSCs) and evaluate their effect on proliferation and osteogenic differentiation of rBMSCs in vitro. We observed that spherical nano-bioactive glass (SNBG) was spherical with smooth boundary, while the radial spherical nano-bioactive glass (RSNBG) had radial pore on the surface of particle boundary. When the two materials were immersed in simulated body fluid for 24 h, RSNBG produced more and denser hydroxyapatite carbonate than SNBG. The concentration of Ca and Si ions in RSNBG 24 h extract is higher than that of SNBG, while the concentration of P ions is lower. Proliferation, alkaline phosphatase (ALP) activity, intracellular Ca ion concentrations defined as the number of mineralized nodules produced, and the expression of osteogenic genes were significantly higher in rBMSCs co-cultured with 50 µg/mL RSNBG than SNBG. Overall, these results validated our hypothesis that RSNBG can provide better benefit than SNBG for inducing proliferation and osteogenic differentiation in rBMSCs, in turn suggested the feasibility of this RSNBG in further studies and utilization toward the ends of improved bone repair effectiveness.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32140885</pmid><doi>10.1007/s10856-020-06368-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2020-03, Vol.31 (3), p.29, Article 29 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_pubmed_primary_32140885 |
source | MEDLINE; SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Alkaline phosphatase Animals Biocompatible Materials - chemistry Bioglass Biological activity Biological effects Biomaterials Biomedical Engineering and Bioengineering Biomedical materials Body fluids Bone healing Bone marrow Bone Marrow Cells - drug effects Calcium - chemistry Calcium ions Cell Differentiation Cell Proliferation Cells, Cultured Ceramics Chemistry and Materials Science Composites Differentiation (biology) Engineering Engineering and Nano-engineering Approaches for Medical Devices Engineering, Biomedical Feasibility Gene expression Glass Glass - chemistry Hydroxyapatite In vitro methods and tests Ions Materials Science Materials Science, Biomaterials Mesenchymal stem cells Mesenchymal Stem Cells - drug effects Morphology Nanoparticles - chemistry Nanotechnology Natural Materials Nodules Osteogenesis - drug effects Particle Size Physicochemical properties Polymer Sciences Rats Rats, Sprague-Dawley Regenerative Medicine/Tissue Engineering Repair Science & Technology Smooth boundaries Stem cell transplantation Stem cells Surface Properties Surfaces and Interfaces Surgical implants Technology Thin Films Tissue Scaffolds - chemistry |
title | Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T20%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20nanoscale%20bioactive%20glass%20with%20radial%20spherical%20particles%20on%20osteogenic%20differentiation%20of%20rat%20bone%20marrow%20mesenchymal%20stem%20cells&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Wang,%20Lili&rft.date=2020-03-05&rft.volume=31&rft.issue=3&rft.spage=29&rft.pages=29-&rft.artnum=29&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-020-06368-8&rft_dat=%3Cproquest_pubme%3E2371560392%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371560392&rft_id=info:pmid/32140885&rfr_iscdi=true |