Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes

In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus . Our goal was to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.3864-3864, Article 3864
Hauptverfasser: Romero Victorica, Matias, Soria, Marcelo A., Batista-García, Ramón Alberto, Ceja-Navarro, Javier A., Vikram, Surendra, Ortiz, Maximiliano, Ontañon, Ornella, Ghio, Silvina, Martínez-Ávila, Liliana, Quintero García, Omar Jasiel, Etcheverry, Clara, Campos, Eleonora, Cowan, Donald, Arneodo, Joel, Talia, Paola M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3864
container_issue 1
container_start_page 3864
container_title Scientific reports
container_volume 10
creator Romero Victorica, Matias
Soria, Marcelo A.
Batista-García, Ramón Alberto
Ceja-Navarro, Javier A.
Vikram, Surendra
Ortiz, Maximiliano
Ontañon, Ornella
Ghio, Silvina
Martínez-Ávila, Liliana
Quintero García, Omar Jasiel
Etcheverry, Clara
Campos, Eleonora
Cowan, Donald
Arneodo, Joel
Talia, Paola M.
description In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus . Our goal was to assess the microbial community compositions and metabolic capacity, and to identify genes involved in lignocellulose degradation. Individuals from both termite species contained the same five dominant bacterial phyla (Spirochaetes, Firmicutes, Proteobacteria, Fibrobacteres and Bacteroidetes) although with different relative abundances. However, detected functional capacity varied, with C. fulviceps (a grass-wood-feeder) gut microbiome samples containing more genes related to amino acid metabolism, whereas N. aquilinus (a wood-feeder) gut microbiome samples were enriched in genes involved in carbohydrate metabolism and cellulose degradation. The C. fulviceps gut microbiome was enriched specifically in genes coding for debranching- and oligosaccharide-degrading enzymes. These findings suggest an association between the primary food source and the predicted categories of the enzymes present in the gut microbiomes of each species. To further investigate the termite microbiomes as sources of biotechnologically relevant glycosyl hydrolases, a putative GH10 endo-β-1,4-xylanase, Xyl10E, was cloned and expressed in Escherichia coli . Functional analysis of the recombinant metagenome-derived enzyme showed high specificity towards beechwood xylan (288.1 IU/mg), with the optimum activity at 50 °C and a pH-activity range from 5 to 10. These characteristics suggest that Xy110E may be a promising candidate for further development in lignocellulose deconstruction applications.
doi_str_mv 10.1038/s41598-020-60850-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32123275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735431229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-894e9247a532cdf4f982a92f36dd57533dcdfa2c208f14813ad3ad77b1c8e48a3</originalsourceid><addsrcrecordid>eNqNkl1vFCEUhonR2GbtH_DCTPTGxIzyOcCNidm0atLojb0mLHNmSzMDK7Bt6q-XcepavWgkBAg858B7eBF6TvBbgpl6lzkRWrWY4rbDSuBWPELHFHPRUkbp43vrI3SS8xWuTVDNiX6Kjhgl9USKY3TxBWJJceedHZsCafIFmsm7FDc-TpAbm5sc98nVZRyaEK9hbHajDaVxMI7Nja1DD9tkex-2DYQftzXqGXoy2DHDyd28Qhdnp9_Wn9rzrx8_rz-ct050XWmV5qApl1Yw6vqBD1pRq-nAur4XUjDW111LHcVqIFwRZvvapdwQp4Ary1bo_ZJ3t99M0DsIJdnR7JKfbLo10Xrz90nwl2Ybr42stSCc1wQvlwQxF2-yq-rdpYshgCuGdESw2lfo9d0tKX7fQy5m8nlWbwPEfTaUScw1p1pW9NU_6FUtXqg1MFQywRmhVD9IsU4rIZicc9GFqp-Rc4LhoItgM3vALB4w1QPmlwfM_NYX9ytyCPn94xVQC3ADmzhUxRAcHLDZJB1VSurZL2Ttiy0-hnXch1JD3_x_aKXZQudKhC2kPyIfeP9PXSzcyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369855377</pqid></control><display><type>article</type><title>Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Romero Victorica, Matias ; Soria, Marcelo A. ; Batista-García, Ramón Alberto ; Ceja-Navarro, Javier A. ; Vikram, Surendra ; Ortiz, Maximiliano ; Ontañon, Ornella ; Ghio, Silvina ; Martínez-Ávila, Liliana ; Quintero García, Omar Jasiel ; Etcheverry, Clara ; Campos, Eleonora ; Cowan, Donald ; Arneodo, Joel ; Talia, Paola M.</creator><creatorcontrib>Romero Victorica, Matias ; Soria, Marcelo A. ; Batista-García, Ramón Alberto ; Ceja-Navarro, Javier A. ; Vikram, Surendra ; Ortiz, Maximiliano ; Ontañon, Ornella ; Ghio, Silvina ; Martínez-Ávila, Liliana ; Quintero García, Omar Jasiel ; Etcheverry, Clara ; Campos, Eleonora ; Cowan, Donald ; Arneodo, Joel ; Talia, Paola M. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus . Our goal was to assess the microbial community compositions and metabolic capacity, and to identify genes involved in lignocellulose degradation. Individuals from both termite species contained the same five dominant bacterial phyla (Spirochaetes, Firmicutes, Proteobacteria, Fibrobacteres and Bacteroidetes) although with different relative abundances. However, detected functional capacity varied, with C. fulviceps (a grass-wood-feeder) gut microbiome samples containing more genes related to amino acid metabolism, whereas N. aquilinus (a wood-feeder) gut microbiome samples were enriched in genes involved in carbohydrate metabolism and cellulose degradation. The C. fulviceps gut microbiome was enriched specifically in genes coding for debranching- and oligosaccharide-degrading enzymes. These findings suggest an association between the primary food source and the predicted categories of the enzymes present in the gut microbiomes of each species. To further investigate the termite microbiomes as sources of biotechnologically relevant glycosyl hydrolases, a putative GH10 endo-β-1,4-xylanase, Xyl10E, was cloned and expressed in Escherichia coli . Functional analysis of the recombinant metagenome-derived enzyme showed high specificity towards beechwood xylan (288.1 IU/mg), with the optimum activity at 50 °C and a pH-activity range from 5 to 10. These characteristics suggest that Xy110E may be a promising candidate for further development in lignocellulose deconstruction applications.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-60850-5</identifier><identifier>PMID: 32123275</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 38/22 ; 38/77 ; 631/326/2565/2142 ; 631/61/514/2254 ; 82/80 ; 82/83 ; Amino acids ; Animals ; Bacteria - enzymology ; Bacteria - genetics ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Biodegradation ; Biotechnology ; Carbohydrate metabolism ; Cell Wall ; Cell walls ; Cellulose ; Cellulose - chemistry ; E coli ; Enzymes ; Food sources ; Gastrointestinal Microbiome - physiology ; Glycoside Hydrolases - genetics ; Glycoside Hydrolases - metabolism ; Glycosyl hydrolase ; Humanities and Social Sciences ; Intestinal microflora ; Isoptera - metabolism ; Isoptera - microbiology ; Lignocellulose ; Metabolism ; Metagenomics ; Microbiomes ; multidisciplinary ; Multidisciplinary Sciences ; Oligosaccharides ; Plant Cells ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Species ; Species Specificity ; Termites ; Wood ; Xylan</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.3864-3864, Article 3864</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>28</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000562887900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c566t-894e9247a532cdf4f982a92f36dd57533dcdfa2c208f14813ad3ad77b1c8e48a3</citedby><cites>FETCH-LOGICAL-c566t-894e9247a532cdf4f982a92f36dd57533dcdfa2c208f14813ad3ad77b1c8e48a3</cites><orcidid>0000-0002-4481-7835 ; 0000-0001-8556-147X ; 0000-0002-2954-3477 ; 0000-0002-4778-9091 ; 0000-0002-0887-6627 ; 0000-0003-2877-8271 ; 0000-0002-4721-2890 ; 0000000244817835 ; 0000000229543477 ; 000000018556147X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052144/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052144/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2115,27928,27929,41124,42193,51580,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32123275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1615315$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Romero Victorica, Matias</creatorcontrib><creatorcontrib>Soria, Marcelo A.</creatorcontrib><creatorcontrib>Batista-García, Ramón Alberto</creatorcontrib><creatorcontrib>Ceja-Navarro, Javier A.</creatorcontrib><creatorcontrib>Vikram, Surendra</creatorcontrib><creatorcontrib>Ortiz, Maximiliano</creatorcontrib><creatorcontrib>Ontañon, Ornella</creatorcontrib><creatorcontrib>Ghio, Silvina</creatorcontrib><creatorcontrib>Martínez-Ávila, Liliana</creatorcontrib><creatorcontrib>Quintero García, Omar Jasiel</creatorcontrib><creatorcontrib>Etcheverry, Clara</creatorcontrib><creatorcontrib>Campos, Eleonora</creatorcontrib><creatorcontrib>Cowan, Donald</creatorcontrib><creatorcontrib>Arneodo, Joel</creatorcontrib><creatorcontrib>Talia, Paola M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus . Our goal was to assess the microbial community compositions and metabolic capacity, and to identify genes involved in lignocellulose degradation. Individuals from both termite species contained the same five dominant bacterial phyla (Spirochaetes, Firmicutes, Proteobacteria, Fibrobacteres and Bacteroidetes) although with different relative abundances. However, detected functional capacity varied, with C. fulviceps (a grass-wood-feeder) gut microbiome samples containing more genes related to amino acid metabolism, whereas N. aquilinus (a wood-feeder) gut microbiome samples were enriched in genes involved in carbohydrate metabolism and cellulose degradation. The C. fulviceps gut microbiome was enriched specifically in genes coding for debranching- and oligosaccharide-degrading enzymes. These findings suggest an association between the primary food source and the predicted categories of the enzymes present in the gut microbiomes of each species. To further investigate the termite microbiomes as sources of biotechnologically relevant glycosyl hydrolases, a putative GH10 endo-β-1,4-xylanase, Xyl10E, was cloned and expressed in Escherichia coli . Functional analysis of the recombinant metagenome-derived enzyme showed high specificity towards beechwood xylan (288.1 IU/mg), with the optimum activity at 50 °C and a pH-activity range from 5 to 10. These characteristics suggest that Xy110E may be a promising candidate for further development in lignocellulose deconstruction applications.</description><subject>38</subject><subject>38/22</subject><subject>38/77</subject><subject>631/326/2565/2142</subject><subject>631/61/514/2254</subject><subject>82/80</subject><subject>82/83</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biodegradation</subject><subject>Biotechnology</subject><subject>Carbohydrate metabolism</subject><subject>Cell Wall</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Food sources</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Glycosyl hydrolase</subject><subject>Humanities and Social Sciences</subject><subject>Intestinal microflora</subject><subject>Isoptera - metabolism</subject><subject>Isoptera - microbiology</subject><subject>Lignocellulose</subject><subject>Metabolism</subject><subject>Metagenomics</subject><subject>Microbiomes</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Oligosaccharides</subject><subject>Plant Cells</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Species</subject><subject>Species Specificity</subject><subject>Termites</subject><subject>Wood</subject><subject>Xylan</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1vFCEUhonR2GbtH_DCTPTGxIzyOcCNidm0atLojb0mLHNmSzMDK7Bt6q-XcepavWgkBAg858B7eBF6TvBbgpl6lzkRWrWY4rbDSuBWPELHFHPRUkbp43vrI3SS8xWuTVDNiX6Kjhgl9USKY3TxBWJJceedHZsCafIFmsm7FDc-TpAbm5sc98nVZRyaEK9hbHajDaVxMI7Nja1DD9tkex-2DYQftzXqGXoy2DHDyd28Qhdnp9_Wn9rzrx8_rz-ct050XWmV5qApl1Yw6vqBD1pRq-nAur4XUjDW111LHcVqIFwRZvvapdwQp4Ary1bo_ZJ3t99M0DsIJdnR7JKfbLo10Xrz90nwl2Ybr42stSCc1wQvlwQxF2-yq-rdpYshgCuGdESw2lfo9d0tKX7fQy5m8nlWbwPEfTaUScw1p1pW9NU_6FUtXqg1MFQywRmhVD9IsU4rIZicc9GFqp-Rc4LhoItgM3vALB4w1QPmlwfM_NYX9ytyCPn94xVQC3ADmzhUxRAcHLDZJB1VSurZL2Ttiy0-hnXch1JD3_x_aKXZQudKhC2kPyIfeP9PXSzcyw</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Romero Victorica, Matias</creator><creator>Soria, Marcelo A.</creator><creator>Batista-García, Ramón Alberto</creator><creator>Ceja-Navarro, Javier A.</creator><creator>Vikram, Surendra</creator><creator>Ortiz, Maximiliano</creator><creator>Ontañon, Ornella</creator><creator>Ghio, Silvina</creator><creator>Martínez-Ávila, Liliana</creator><creator>Quintero García, Omar Jasiel</creator><creator>Etcheverry, Clara</creator><creator>Campos, Eleonora</creator><creator>Cowan, Donald</creator><creator>Arneodo, Joel</creator><creator>Talia, Paola M.</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4481-7835</orcidid><orcidid>https://orcid.org/0000-0001-8556-147X</orcidid><orcidid>https://orcid.org/0000-0002-2954-3477</orcidid><orcidid>https://orcid.org/0000-0002-4778-9091</orcidid><orcidid>https://orcid.org/0000-0002-0887-6627</orcidid><orcidid>https://orcid.org/0000-0003-2877-8271</orcidid><orcidid>https://orcid.org/0000-0002-4721-2890</orcidid><orcidid>https://orcid.org/0000000244817835</orcidid><orcidid>https://orcid.org/0000000229543477</orcidid><orcidid>https://orcid.org/000000018556147X</orcidid></search><sort><creationdate>20200302</creationdate><title>Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes</title><author>Romero Victorica, Matias ; Soria, Marcelo A. ; Batista-García, Ramón Alberto ; Ceja-Navarro, Javier A. ; Vikram, Surendra ; Ortiz, Maximiliano ; Ontañon, Ornella ; Ghio, Silvina ; Martínez-Ávila, Liliana ; Quintero García, Omar Jasiel ; Etcheverry, Clara ; Campos, Eleonora ; Cowan, Donald ; Arneodo, Joel ; Talia, Paola M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-894e9247a532cdf4f982a92f36dd57533dcdfa2c208f14813ad3ad77b1c8e48a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38</topic><topic>38/22</topic><topic>38/77</topic><topic>631/326/2565/2142</topic><topic>631/61/514/2254</topic><topic>82/80</topic><topic>82/83</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biodegradation</topic><topic>Biotechnology</topic><topic>Carbohydrate metabolism</topic><topic>Cell Wall</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Food sources</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Glycosyl hydrolase</topic><topic>Humanities and Social Sciences</topic><topic>Intestinal microflora</topic><topic>Isoptera - metabolism</topic><topic>Isoptera - microbiology</topic><topic>Lignocellulose</topic><topic>Metabolism</topic><topic>Metagenomics</topic><topic>Microbiomes</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Oligosaccharides</topic><topic>Plant Cells</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Species</topic><topic>Species Specificity</topic><topic>Termites</topic><topic>Wood</topic><topic>Xylan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romero Victorica, Matias</creatorcontrib><creatorcontrib>Soria, Marcelo A.</creatorcontrib><creatorcontrib>Batista-García, Ramón Alberto</creatorcontrib><creatorcontrib>Ceja-Navarro, Javier A.</creatorcontrib><creatorcontrib>Vikram, Surendra</creatorcontrib><creatorcontrib>Ortiz, Maximiliano</creatorcontrib><creatorcontrib>Ontañon, Ornella</creatorcontrib><creatorcontrib>Ghio, Silvina</creatorcontrib><creatorcontrib>Martínez-Ávila, Liliana</creatorcontrib><creatorcontrib>Quintero García, Omar Jasiel</creatorcontrib><creatorcontrib>Etcheverry, Clara</creatorcontrib><creatorcontrib>Campos, Eleonora</creatorcontrib><creatorcontrib>Cowan, Donald</creatorcontrib><creatorcontrib>Arneodo, Joel</creatorcontrib><creatorcontrib>Talia, Paola M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romero Victorica, Matias</au><au>Soria, Marcelo A.</au><au>Batista-García, Ramón Alberto</au><au>Ceja-Navarro, Javier A.</au><au>Vikram, Surendra</au><au>Ortiz, Maximiliano</au><au>Ontañon, Ornella</au><au>Ghio, Silvina</au><au>Martínez-Ávila, Liliana</au><au>Quintero García, Omar Jasiel</au><au>Etcheverry, Clara</au><au>Campos, Eleonora</au><au>Cowan, Donald</au><au>Arneodo, Joel</au><au>Talia, Paola M.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2020-03-02</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>3864</spage><epage>3864</epage><pages>3864-3864</pages><artnum>3864</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus . Our goal was to assess the microbial community compositions and metabolic capacity, and to identify genes involved in lignocellulose degradation. Individuals from both termite species contained the same five dominant bacterial phyla (Spirochaetes, Firmicutes, Proteobacteria, Fibrobacteres and Bacteroidetes) although with different relative abundances. However, detected functional capacity varied, with C. fulviceps (a grass-wood-feeder) gut microbiome samples containing more genes related to amino acid metabolism, whereas N. aquilinus (a wood-feeder) gut microbiome samples were enriched in genes involved in carbohydrate metabolism and cellulose degradation. The C. fulviceps gut microbiome was enriched specifically in genes coding for debranching- and oligosaccharide-degrading enzymes. These findings suggest an association between the primary food source and the predicted categories of the enzymes present in the gut microbiomes of each species. To further investigate the termite microbiomes as sources of biotechnologically relevant glycosyl hydrolases, a putative GH10 endo-β-1,4-xylanase, Xyl10E, was cloned and expressed in Escherichia coli . Functional analysis of the recombinant metagenome-derived enzyme showed high specificity towards beechwood xylan (288.1 IU/mg), with the optimum activity at 50 °C and a pH-activity range from 5 to 10. These characteristics suggest that Xy110E may be a promising candidate for further development in lignocellulose deconstruction applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32123275</pmid><doi>10.1038/s41598-020-60850-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4481-7835</orcidid><orcidid>https://orcid.org/0000-0001-8556-147X</orcidid><orcidid>https://orcid.org/0000-0002-2954-3477</orcidid><orcidid>https://orcid.org/0000-0002-4778-9091</orcidid><orcidid>https://orcid.org/0000-0002-0887-6627</orcidid><orcidid>https://orcid.org/0000-0003-2877-8271</orcidid><orcidid>https://orcid.org/0000-0002-4721-2890</orcidid><orcidid>https://orcid.org/0000000244817835</orcidid><orcidid>https://orcid.org/0000000229543477</orcidid><orcidid>https://orcid.org/000000018556147X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-03, Vol.10 (1), p.3864-3864, Article 3864
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmed_primary_32123275
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 38
38/22
38/77
631/326/2565/2142
631/61/514/2254
82/80
82/83
Amino acids
Animals
Bacteria - enzymology
Bacteria - genetics
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
BASIC BIOLOGICAL SCIENCES
Biodegradation
Biotechnology
Carbohydrate metabolism
Cell Wall
Cell walls
Cellulose
Cellulose - chemistry
E coli
Enzymes
Food sources
Gastrointestinal Microbiome - physiology
Glycoside Hydrolases - genetics
Glycoside Hydrolases - metabolism
Glycosyl hydrolase
Humanities and Social Sciences
Intestinal microflora
Isoptera - metabolism
Isoptera - microbiology
Lignocellulose
Metabolism
Metagenomics
Microbiomes
multidisciplinary
Multidisciplinary Sciences
Oligosaccharides
Plant Cells
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
Species
Species Specificity
Termites
Wood
Xylan
title Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neotropical%20termite%20microbiomes%20as%20sources%20of%20novel%20plant%20cell%20wall%20degrading%20enzymes&rft.jtitle=Scientific%20reports&rft.au=Romero%20Victorica,%20Matias&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-03-02&rft.volume=10&rft.issue=1&rft.spage=3864&rft.epage=3864&rft.pages=3864-3864&rft.artnum=3864&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-60850-5&rft_dat=%3Cproquest_pubme%3E2735431229%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369855377&rft_id=info:pmid/32123275&rfr_iscdi=true