Pore Structure Changes Occur During CO 2 Injection into Carbonate Reservoirs
Observations and modeling studies have shown that during CO injection into underground carbonate reservoirs, the dissolution of CO into formation water forms acidic brine, leading to fluid-rock interactions that can significantly impact the hydraulic properties of the host formation. However, the im...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-02, Vol.10 (1), p.3624 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 3624 |
container_title | Scientific reports |
container_volume | 10 |
creator | Seyyedi, Mojtaba Mahmud, Hisham Khaled Ben Verrall, Michael Giwelli, Ausama Esteban, Lionel Ghasemiziarani, Mohsen Clennell, Ben |
description | Observations and modeling studies have shown that during CO
injection into underground carbonate reservoirs, the dissolution of CO
into formation water forms acidic brine, leading to fluid-rock interactions that can significantly impact the hydraulic properties of the host formation. However, the impacts of these interactions on the pore structure and macroscopic flow properties of host rock are poorly characterized both for the near-wellbore region and deeper into the reservoir. Little attention has been given to the influence of pressure drop from the near-wellbore region to reservoir body on disturbing the ionic equilibrium in the CO
-saturated brine and consequent mineral precipitation. In this paper, we present the results of a novel experimental procedure designed to address these issues in carbonate reservoirs. We injected CO
-saturated brine into a composite core made of two matching grainstone carbonate core plugs with a tight disk placed between them to create a pressure profile of around 250 psi resembling that prevailing in reservoirs during CO
injection. We investigated the impacts of fluid-rock interactions at pore and continuum scale using medical X-ray CT, nuclear magnetic resonance, and scanning electron microscopy. We found that strong calcite dissolution occurs near to the injection point, which leads to an increase in primary intergranular porosity and permeability of the near injection region, and ultimately to wormhole formation. The strong heterogeneous dissolution of calcite grains leads to the formation of intra-granular micro-pores. At later stages of the dissolution, the internal regions of ooids become accessible to the carbonated brine, leading to the formation of moldic porosity. At distances far from the injection point, we observed minimal or no change in pore structure, pore roughness, pore populations, and rock hydraulic properties. The pressure drop of 250 psi slightly disturbed the chemical equilibrium of the system, which led to minor precipitation of sub-micron sized calcite crystals but due to the large pore throats of the rock, these deposits had no measurable impact on rock permeability. The trial illustrates that the new procedure is valuable for investigating fluid-rock interactions by reproducing the geochemical consequences of relatively steep pore pressure gradients during CO
injection. |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_32107400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32107400</sourcerecordid><originalsourceid>FETCH-pubmed_primary_321074003</originalsourceid><addsrcrecordid>eNqFjUEKwjAUBYMgtmivIP8ChZi2SNdRURAq6r6kMdYUm5SfRPD2dqFr32ZmMfAmJGY0L1KWMRaRxLmOjitYma_KGYkytqLrnNKYHE8WFVw8BunDaPwhTKscVFIGhE1AbVrgFTA4mE5Jr60BbbwFLrCxRngFZ-UUvqxGtyDTu3g6lXw5J8vd9sr36RCaXt3qAXUv8F3_7rO_wQe3WDqN</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pore Structure Changes Occur During CO 2 Injection into Carbonate Reservoirs</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Seyyedi, Mojtaba ; Mahmud, Hisham Khaled Ben ; Verrall, Michael ; Giwelli, Ausama ; Esteban, Lionel ; Ghasemiziarani, Mohsen ; Clennell, Ben</creator><creatorcontrib>Seyyedi, Mojtaba ; Mahmud, Hisham Khaled Ben ; Verrall, Michael ; Giwelli, Ausama ; Esteban, Lionel ; Ghasemiziarani, Mohsen ; Clennell, Ben</creatorcontrib><description>Observations and modeling studies have shown that during CO
injection into underground carbonate reservoirs, the dissolution of CO
into formation water forms acidic brine, leading to fluid-rock interactions that can significantly impact the hydraulic properties of the host formation. However, the impacts of these interactions on the pore structure and macroscopic flow properties of host rock are poorly characterized both for the near-wellbore region and deeper into the reservoir. Little attention has been given to the influence of pressure drop from the near-wellbore region to reservoir body on disturbing the ionic equilibrium in the CO
-saturated brine and consequent mineral precipitation. In this paper, we present the results of a novel experimental procedure designed to address these issues in carbonate reservoirs. We injected CO
-saturated brine into a composite core made of two matching grainstone carbonate core plugs with a tight disk placed between them to create a pressure profile of around 250 psi resembling that prevailing in reservoirs during CO
injection. We investigated the impacts of fluid-rock interactions at pore and continuum scale using medical X-ray CT, nuclear magnetic resonance, and scanning electron microscopy. We found that strong calcite dissolution occurs near to the injection point, which leads to an increase in primary intergranular porosity and permeability of the near injection region, and ultimately to wormhole formation. The strong heterogeneous dissolution of calcite grains leads to the formation of intra-granular micro-pores. At later stages of the dissolution, the internal regions of ooids become accessible to the carbonated brine, leading to the formation of moldic porosity. At distances far from the injection point, we observed minimal or no change in pore structure, pore roughness, pore populations, and rock hydraulic properties. The pressure drop of 250 psi slightly disturbed the chemical equilibrium of the system, which led to minor precipitation of sub-micron sized calcite crystals but due to the large pore throats of the rock, these deposits had no measurable impact on rock permeability. The trial illustrates that the new procedure is valuable for investigating fluid-rock interactions by reproducing the geochemical consequences of relatively steep pore pressure gradients during CO
injection.</description><identifier>EISSN: 2045-2322</identifier><identifier>PMID: 32107400</identifier><language>eng</language><publisher>England</publisher><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.3624</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32107400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seyyedi, Mojtaba</creatorcontrib><creatorcontrib>Mahmud, Hisham Khaled Ben</creatorcontrib><creatorcontrib>Verrall, Michael</creatorcontrib><creatorcontrib>Giwelli, Ausama</creatorcontrib><creatorcontrib>Esteban, Lionel</creatorcontrib><creatorcontrib>Ghasemiziarani, Mohsen</creatorcontrib><creatorcontrib>Clennell, Ben</creatorcontrib><title>Pore Structure Changes Occur During CO 2 Injection into Carbonate Reservoirs</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Observations and modeling studies have shown that during CO
injection into underground carbonate reservoirs, the dissolution of CO
into formation water forms acidic brine, leading to fluid-rock interactions that can significantly impact the hydraulic properties of the host formation. However, the impacts of these interactions on the pore structure and macroscopic flow properties of host rock are poorly characterized both for the near-wellbore region and deeper into the reservoir. Little attention has been given to the influence of pressure drop from the near-wellbore region to reservoir body on disturbing the ionic equilibrium in the CO
-saturated brine and consequent mineral precipitation. In this paper, we present the results of a novel experimental procedure designed to address these issues in carbonate reservoirs. We injected CO
-saturated brine into a composite core made of two matching grainstone carbonate core plugs with a tight disk placed between them to create a pressure profile of around 250 psi resembling that prevailing in reservoirs during CO
injection. We investigated the impacts of fluid-rock interactions at pore and continuum scale using medical X-ray CT, nuclear magnetic resonance, and scanning electron microscopy. We found that strong calcite dissolution occurs near to the injection point, which leads to an increase in primary intergranular porosity and permeability of the near injection region, and ultimately to wormhole formation. The strong heterogeneous dissolution of calcite grains leads to the formation of intra-granular micro-pores. At later stages of the dissolution, the internal regions of ooids become accessible to the carbonated brine, leading to the formation of moldic porosity. At distances far from the injection point, we observed minimal or no change in pore structure, pore roughness, pore populations, and rock hydraulic properties. The pressure drop of 250 psi slightly disturbed the chemical equilibrium of the system, which led to minor precipitation of sub-micron sized calcite crystals but due to the large pore throats of the rock, these deposits had no measurable impact on rock permeability. The trial illustrates that the new procedure is valuable for investigating fluid-rock interactions by reproducing the geochemical consequences of relatively steep pore pressure gradients during CO
injection.</description><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFjUEKwjAUBYMgtmivIP8ChZi2SNdRURAq6r6kMdYUm5SfRPD2dqFr32ZmMfAmJGY0L1KWMRaRxLmOjitYma_KGYkytqLrnNKYHE8WFVw8BunDaPwhTKscVFIGhE1AbVrgFTA4mE5Jr60BbbwFLrCxRngFZ-UUvqxGtyDTu3g6lXw5J8vd9sr36RCaXt3qAXUv8F3_7rO_wQe3WDqN</recordid><startdate>20200227</startdate><enddate>20200227</enddate><creator>Seyyedi, Mojtaba</creator><creator>Mahmud, Hisham Khaled Ben</creator><creator>Verrall, Michael</creator><creator>Giwelli, Ausama</creator><creator>Esteban, Lionel</creator><creator>Ghasemiziarani, Mohsen</creator><creator>Clennell, Ben</creator><scope>NPM</scope></search><sort><creationdate>20200227</creationdate><title>Pore Structure Changes Occur During CO 2 Injection into Carbonate Reservoirs</title><author>Seyyedi, Mojtaba ; Mahmud, Hisham Khaled Ben ; Verrall, Michael ; Giwelli, Ausama ; Esteban, Lionel ; Ghasemiziarani, Mohsen ; Clennell, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_321074003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seyyedi, Mojtaba</creatorcontrib><creatorcontrib>Mahmud, Hisham Khaled Ben</creatorcontrib><creatorcontrib>Verrall, Michael</creatorcontrib><creatorcontrib>Giwelli, Ausama</creatorcontrib><creatorcontrib>Esteban, Lionel</creatorcontrib><creatorcontrib>Ghasemiziarani, Mohsen</creatorcontrib><creatorcontrib>Clennell, Ben</creatorcontrib><collection>PubMed</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seyyedi, Mojtaba</au><au>Mahmud, Hisham Khaled Ben</au><au>Verrall, Michael</au><au>Giwelli, Ausama</au><au>Esteban, Lionel</au><au>Ghasemiziarani, Mohsen</au><au>Clennell, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore Structure Changes Occur During CO 2 Injection into Carbonate Reservoirs</atitle><jtitle>Scientific reports</jtitle><addtitle>Sci Rep</addtitle><date>2020-02-27</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>3624</spage><pages>3624-</pages><eissn>2045-2322</eissn><abstract>Observations and modeling studies have shown that during CO
injection into underground carbonate reservoirs, the dissolution of CO
into formation water forms acidic brine, leading to fluid-rock interactions that can significantly impact the hydraulic properties of the host formation. However, the impacts of these interactions on the pore structure and macroscopic flow properties of host rock are poorly characterized both for the near-wellbore region and deeper into the reservoir. Little attention has been given to the influence of pressure drop from the near-wellbore region to reservoir body on disturbing the ionic equilibrium in the CO
-saturated brine and consequent mineral precipitation. In this paper, we present the results of a novel experimental procedure designed to address these issues in carbonate reservoirs. We injected CO
-saturated brine into a composite core made of two matching grainstone carbonate core plugs with a tight disk placed between them to create a pressure profile of around 250 psi resembling that prevailing in reservoirs during CO
injection. We investigated the impacts of fluid-rock interactions at pore and continuum scale using medical X-ray CT, nuclear magnetic resonance, and scanning electron microscopy. We found that strong calcite dissolution occurs near to the injection point, which leads to an increase in primary intergranular porosity and permeability of the near injection region, and ultimately to wormhole formation. The strong heterogeneous dissolution of calcite grains leads to the formation of intra-granular micro-pores. At later stages of the dissolution, the internal regions of ooids become accessible to the carbonated brine, leading to the formation of moldic porosity. At distances far from the injection point, we observed minimal or no change in pore structure, pore roughness, pore populations, and rock hydraulic properties. The pressure drop of 250 psi slightly disturbed the chemical equilibrium of the system, which led to minor precipitation of sub-micron sized calcite crystals but due to the large pore throats of the rock, these deposits had no measurable impact on rock permeability. The trial illustrates that the new procedure is valuable for investigating fluid-rock interactions by reproducing the geochemical consequences of relatively steep pore pressure gradients during CO
injection.</abstract><cop>England</cop><pmid>32107400</pmid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2045-2322 |
ispartof | Scientific reports, 2020-02, Vol.10 (1), p.3624 |
issn | 2045-2322 |
language | eng |
recordid | cdi_pubmed_primary_32107400 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
title | Pore Structure Changes Occur During CO 2 Injection into Carbonate Reservoirs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore%20Structure%20Changes%20Occur%20During%20CO%202%20Injection%20into%20Carbonate%20Reservoirs&rft.jtitle=Scientific%20reports&rft.au=Seyyedi,%20Mojtaba&rft.date=2020-02-27&rft.volume=10&rft.issue=1&rft.spage=3624&rft.pages=3624-&rft.eissn=2045-2322&rft_id=info:doi/&rft_dat=%3Cpubmed%3E32107400%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32107400&rfr_iscdi=true |