Adaptive Neural Network Fixed-Time Leader-Follower Consensus for Multiagent Systems With Constraints and Disturbances

This article is concerned with fixed-time leader-follower consensus problem for multiagent systems (MASs) with output constraints, unknown control direction, unknown system dynamics, unknown external disturbance, and dead-zone control input. First, a fixed-time distributed observer is presented for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2021-04, Vol.51 (4), p.1835-1848
Hauptverfasser: Ni, Junkang, Shi, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article is concerned with fixed-time leader-follower consensus problem for multiagent systems (MASs) with output constraints, unknown control direction, unknown system dynamics, unknown external disturbance, and dead-zone control input. First, a fixed-time distributed observer is presented for each follower to estimate the leader's states. Next, using a modified nonlinear mapping, an output-constrained system is transformed into an unconstrained system. Then, by adopting adding a power integrator technique, radial basis function neural network (RBFNN) approximation, and adaptive method, the ideal fixed-time stable virtual control protocol is derived and the issues of unknown control direction, unknown system dynamics, and unknown external disturbance are addressed. Finally, the actual control protocol is developed using the bound of dead-zone parameters. It is shown that the proposed control scheme achieves fixed-time leader-follower consensus of the studied MAS. The presented control protocol is applied to the leader-follower consensus of inverted pendulums and simulation results verify its effectiveness.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2020.2967995