Dynamic 13 C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin
Cellular metabolism is dynamic, but quantifying non-steady metabolic fluxes by stable isotope tracers presents unique computational challenges. Here, we developed an efficient C-tracer dynamic metabolic flux analysis (13C-DMFA) framework for modeling central carbon fluxes that vary over time. We use...
Gespeichert in:
Veröffentlicht in: | iScience 2020-02, Vol.23 (2), p.100855 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 100855 |
container_title | iScience |
container_volume | 23 |
creator | Quek, Lake-Ee Krycer, James R Ohno, Satoshi Yugi, Katsuyuki Fazakerley, Daniel J Scalzo, Richard Elkington, Sarah D Dai, Ziwei Hirayama, Akiyoshi Ikeda, Satsuki Shoji, Futaba Suzuki, Kumi Locasale, Jason W Soga, Tomoyoshi James, David E Kuroda, Shinya |
description | Cellular metabolism is dynamic, but quantifying non-steady metabolic fluxes by stable isotope tracers presents unique computational challenges. Here, we developed an efficient
C-tracer dynamic metabolic flux analysis (13C-DMFA) framework for modeling central carbon fluxes that vary over time. We used B-splines to generalize the flux parameterization system and to improve the stability of the optimization algorithm. As proof of concept, we investigated how 3T3-L1 cultured adipocytes acutely metabolize glucose in response to insulin. Insulin rapidly stimulates glucose uptake, but intracellular pathways responded with differing speeds and magnitudes. Fluxes in lower glycolysis increased faster than those in upper glycolysis. Glycolysis fluxes rose disproportionally larger and faster than the tricarboxylic acid cycle, with lactate a primary glucose end product. The uncovered array of flux dynamics suggests that glucose catabolism is additionally regulated beyond uptake to help shunt glucose into appropriate pathways. This work demonstrates the value of using dynamic intracellular fluxes to understand metabolic function and pathway regulation. |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_32058966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32058966</sourcerecordid><originalsourceid>FETCH-pubmed_primary_320589663</originalsourceid><addsrcrecordid>eNqFjssKwjAURIMgKtpfkPsDhdhq0WWpz4UbcV_SmuqVvOhNwPr1dqFrYWBgzgzMgE2S1XoTc75MxiwienLOk17LTTZi4zThPc2yCdPbzgiNNSxSKGCvwgtyI1RHSFAI50MrCfxDwkXa9i4MvoVHa8A2kN_Q2brzEg4q1JYknKUXlVVIGtD0C3LW9LG3cDIUFJoZGzZCkYy-PmXz_e5aHGMXKi1vpWtRi7Yrf__Sv4UP8m1HDg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic 13 C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Quek, Lake-Ee ; Krycer, James R ; Ohno, Satoshi ; Yugi, Katsuyuki ; Fazakerley, Daniel J ; Scalzo, Richard ; Elkington, Sarah D ; Dai, Ziwei ; Hirayama, Akiyoshi ; Ikeda, Satsuki ; Shoji, Futaba ; Suzuki, Kumi ; Locasale, Jason W ; Soga, Tomoyoshi ; James, David E ; Kuroda, Shinya</creator><creatorcontrib>Quek, Lake-Ee ; Krycer, James R ; Ohno, Satoshi ; Yugi, Katsuyuki ; Fazakerley, Daniel J ; Scalzo, Richard ; Elkington, Sarah D ; Dai, Ziwei ; Hirayama, Akiyoshi ; Ikeda, Satsuki ; Shoji, Futaba ; Suzuki, Kumi ; Locasale, Jason W ; Soga, Tomoyoshi ; James, David E ; Kuroda, Shinya</creatorcontrib><description>Cellular metabolism is dynamic, but quantifying non-steady metabolic fluxes by stable isotope tracers presents unique computational challenges. Here, we developed an efficient
C-tracer dynamic metabolic flux analysis (13C-DMFA) framework for modeling central carbon fluxes that vary over time. We used B-splines to generalize the flux parameterization system and to improve the stability of the optimization algorithm. As proof of concept, we investigated how 3T3-L1 cultured adipocytes acutely metabolize glucose in response to insulin. Insulin rapidly stimulates glucose uptake, but intracellular pathways responded with differing speeds and magnitudes. Fluxes in lower glycolysis increased faster than those in upper glycolysis. Glycolysis fluxes rose disproportionally larger and faster than the tricarboxylic acid cycle, with lactate a primary glucose end product. The uncovered array of flux dynamics suggests that glucose catabolism is additionally regulated beyond uptake to help shunt glucose into appropriate pathways. This work demonstrates the value of using dynamic intracellular fluxes to understand metabolic function and pathway regulation.</description><identifier>EISSN: 2589-0042</identifier><identifier>PMID: 32058966</identifier><language>eng</language><publisher>United States</publisher><ispartof>iScience, 2020-02, Vol.23 (2), p.100855</ispartof><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32058966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quek, Lake-Ee</creatorcontrib><creatorcontrib>Krycer, James R</creatorcontrib><creatorcontrib>Ohno, Satoshi</creatorcontrib><creatorcontrib>Yugi, Katsuyuki</creatorcontrib><creatorcontrib>Fazakerley, Daniel J</creatorcontrib><creatorcontrib>Scalzo, Richard</creatorcontrib><creatorcontrib>Elkington, Sarah D</creatorcontrib><creatorcontrib>Dai, Ziwei</creatorcontrib><creatorcontrib>Hirayama, Akiyoshi</creatorcontrib><creatorcontrib>Ikeda, Satsuki</creatorcontrib><creatorcontrib>Shoji, Futaba</creatorcontrib><creatorcontrib>Suzuki, Kumi</creatorcontrib><creatorcontrib>Locasale, Jason W</creatorcontrib><creatorcontrib>Soga, Tomoyoshi</creatorcontrib><creatorcontrib>James, David E</creatorcontrib><creatorcontrib>Kuroda, Shinya</creatorcontrib><title>Dynamic 13 C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin</title><title>iScience</title><addtitle>iScience</addtitle><description>Cellular metabolism is dynamic, but quantifying non-steady metabolic fluxes by stable isotope tracers presents unique computational challenges. Here, we developed an efficient
C-tracer dynamic metabolic flux analysis (13C-DMFA) framework for modeling central carbon fluxes that vary over time. We used B-splines to generalize the flux parameterization system and to improve the stability of the optimization algorithm. As proof of concept, we investigated how 3T3-L1 cultured adipocytes acutely metabolize glucose in response to insulin. Insulin rapidly stimulates glucose uptake, but intracellular pathways responded with differing speeds and magnitudes. Fluxes in lower glycolysis increased faster than those in upper glycolysis. Glycolysis fluxes rose disproportionally larger and faster than the tricarboxylic acid cycle, with lactate a primary glucose end product. The uncovered array of flux dynamics suggests that glucose catabolism is additionally regulated beyond uptake to help shunt glucose into appropriate pathways. This work demonstrates the value of using dynamic intracellular fluxes to understand metabolic function and pathway regulation.</description><issn>2589-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFjssKwjAURIMgKtpfkPsDhdhq0WWpz4UbcV_SmuqVvOhNwPr1dqFrYWBgzgzMgE2S1XoTc75MxiwienLOk17LTTZi4zThPc2yCdPbzgiNNSxSKGCvwgtyI1RHSFAI50MrCfxDwkXa9i4MvoVHa8A2kN_Q2brzEg4q1JYknKUXlVVIGtD0C3LW9LG3cDIUFJoZGzZCkYy-PmXz_e5aHGMXKi1vpWtRi7Yrf__Sv4UP8m1HDg</recordid><startdate>20200221</startdate><enddate>20200221</enddate><creator>Quek, Lake-Ee</creator><creator>Krycer, James R</creator><creator>Ohno, Satoshi</creator><creator>Yugi, Katsuyuki</creator><creator>Fazakerley, Daniel J</creator><creator>Scalzo, Richard</creator><creator>Elkington, Sarah D</creator><creator>Dai, Ziwei</creator><creator>Hirayama, Akiyoshi</creator><creator>Ikeda, Satsuki</creator><creator>Shoji, Futaba</creator><creator>Suzuki, Kumi</creator><creator>Locasale, Jason W</creator><creator>Soga, Tomoyoshi</creator><creator>James, David E</creator><creator>Kuroda, Shinya</creator><scope>NPM</scope></search><sort><creationdate>20200221</creationdate><title>Dynamic 13 C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin</title><author>Quek, Lake-Ee ; Krycer, James R ; Ohno, Satoshi ; Yugi, Katsuyuki ; Fazakerley, Daniel J ; Scalzo, Richard ; Elkington, Sarah D ; Dai, Ziwei ; Hirayama, Akiyoshi ; Ikeda, Satsuki ; Shoji, Futaba ; Suzuki, Kumi ; Locasale, Jason W ; Soga, Tomoyoshi ; James, David E ; Kuroda, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_320589663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quek, Lake-Ee</creatorcontrib><creatorcontrib>Krycer, James R</creatorcontrib><creatorcontrib>Ohno, Satoshi</creatorcontrib><creatorcontrib>Yugi, Katsuyuki</creatorcontrib><creatorcontrib>Fazakerley, Daniel J</creatorcontrib><creatorcontrib>Scalzo, Richard</creatorcontrib><creatorcontrib>Elkington, Sarah D</creatorcontrib><creatorcontrib>Dai, Ziwei</creatorcontrib><creatorcontrib>Hirayama, Akiyoshi</creatorcontrib><creatorcontrib>Ikeda, Satsuki</creatorcontrib><creatorcontrib>Shoji, Futaba</creatorcontrib><creatorcontrib>Suzuki, Kumi</creatorcontrib><creatorcontrib>Locasale, Jason W</creatorcontrib><creatorcontrib>Soga, Tomoyoshi</creatorcontrib><creatorcontrib>James, David E</creatorcontrib><creatorcontrib>Kuroda, Shinya</creatorcontrib><collection>PubMed</collection><jtitle>iScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quek, Lake-Ee</au><au>Krycer, James R</au><au>Ohno, Satoshi</au><au>Yugi, Katsuyuki</au><au>Fazakerley, Daniel J</au><au>Scalzo, Richard</au><au>Elkington, Sarah D</au><au>Dai, Ziwei</au><au>Hirayama, Akiyoshi</au><au>Ikeda, Satsuki</au><au>Shoji, Futaba</au><au>Suzuki, Kumi</au><au>Locasale, Jason W</au><au>Soga, Tomoyoshi</au><au>James, David E</au><au>Kuroda, Shinya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic 13 C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin</atitle><jtitle>iScience</jtitle><addtitle>iScience</addtitle><date>2020-02-21</date><risdate>2020</risdate><volume>23</volume><issue>2</issue><spage>100855</spage><pages>100855-</pages><eissn>2589-0042</eissn><abstract>Cellular metabolism is dynamic, but quantifying non-steady metabolic fluxes by stable isotope tracers presents unique computational challenges. Here, we developed an efficient
C-tracer dynamic metabolic flux analysis (13C-DMFA) framework for modeling central carbon fluxes that vary over time. We used B-splines to generalize the flux parameterization system and to improve the stability of the optimization algorithm. As proof of concept, we investigated how 3T3-L1 cultured adipocytes acutely metabolize glucose in response to insulin. Insulin rapidly stimulates glucose uptake, but intracellular pathways responded with differing speeds and magnitudes. Fluxes in lower glycolysis increased faster than those in upper glycolysis. Glycolysis fluxes rose disproportionally larger and faster than the tricarboxylic acid cycle, with lactate a primary glucose end product. The uncovered array of flux dynamics suggests that glucose catabolism is additionally regulated beyond uptake to help shunt glucose into appropriate pathways. This work demonstrates the value of using dynamic intracellular fluxes to understand metabolic function and pathway regulation.</abstract><cop>United States</cop><pmid>32058966</pmid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2589-0042 |
ispartof | iScience, 2020-02, Vol.23 (2), p.100855 |
issn | 2589-0042 |
language | eng |
recordid | cdi_pubmed_primary_32058966 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
title | Dynamic 13 C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%2013%20C%20Flux%20Analysis%20Captures%20the%20Reorganization%20of%20Adipocyte%20Glucose%20Metabolism%20in%20Response%20to%20Insulin&rft.jtitle=iScience&rft.au=Quek,%20Lake-Ee&rft.date=2020-02-21&rft.volume=23&rft.issue=2&rft.spage=100855&rft.pages=100855-&rft.eissn=2589-0042&rft_id=info:doi/&rft_dat=%3Cpubmed%3E32058966%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32058966&rfr_iscdi=true |