Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica

Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H 2 ) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H 2 oxidation has not yet been determined. Here, we demonstrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2020-05, Vol.14 (5), p.1273-1289
Hauptverfasser: Miyazaki, Junichi, Ikuta, Tetsuro, Watsuji, Tomo-o, Abe, Mariko, Yamamoto, Masahiro, Nakagawa, Satoshi, Takaki, Yoshihiro, Nakamura, Kentaro, Takai, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1289
container_issue 5
container_start_page 1273
container_title The ISME Journal
container_volume 14
creator Miyazaki, Junichi
Ikuta, Tetsuro
Watsuji, Tomo-o
Abe, Mariko
Yamamoto, Masahiro
Nakagawa, Satoshi
Takaki, Yoshihiro
Nakamura, Kentaro
Takai, Ken
description Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H 2 ) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H 2 oxidation has not yet been determined. Here, we demonstrate that the Campylobacterota endosymbionts of the gastropod Alviniconcha marisindica in the Kairei and Edmond fields (kAlv and eAlv populations, respectively) of the Indian Ocean, utilize H 2 in response to their physical and environmental H 2 conditions, although the 16S rRNA gene sequence of both the endosymbionts shared 99.6% identity. A thermodynamic calculation using in situ H 2 and hydrogen sulfide (H 2 S) concentrations indicated that chemosynthetic symbiosis could be supported by metabolic energy via H 2 oxidation, particularly for the kAlv holobiont. Metabolic activity measurements showed that both the living individuals and the gill tissues consumed H 2 and H 2 S at similar levels. Moreover, a combination of fluorescence in situ hybridization, quantitative transcript analyses, and enzymatic activity measurements showed that the kAlv endosymbiont expressed the genes and enzymes for both H 2 - and sulfur-oxidations. These results suggest that both H 2 and H 2 S could serve as the primary energy sources for the kAlv holobiont. The eAlv holobiont had the ability to utilize H 2 , but the gene expression and enzyme activity for hydrogenases were much lower than for sulfur-oxidation enzymes. These results suggest that the energy acquisitions of A. marisindica holobionts are dependent on H 2 - and sulfur-oxidation in the H 2 -enriched Kairei field and that the mechanism of dual metabolism is controlled by the in situ H 2 concentration.
doi_str_mv 10.1038/s41396-020-0605-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32051527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354736893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-2a7e4145533f7e72809685d0542c8dba3d7737c804afddfa70aa30ea23da45a23</originalsourceid><addsrcrecordid>eNp1kU2LHCEQhiUkZDeT_IBcgpBLLp0ttW17LoFl8rGBhVySs1Tb9oyLrRO1F-bfr5vZTD5gQajCeuq1ypeQ1wzeMxD9RW6ZWHcNcGigA9moJ-ScKckaJRQ8PeUdPyMvcr4BkKrr1HNyJjhIJrk6J_uPC3pqg03bA51twSF6l2caJ1p2lm5w3h98HNAUm2LBSo4xH-bBxVCoC78gs7NzvQw1L87QHNB5eulvXXAmBrNDOmNy2YXRGXxJnk3os331EFfkx-dP3zdXzfW3L183l9eNkaIrDUdlW9ZKKcSkrOI9rLtejiBbbvpxQDGquqTpocVpHCdUgCjAIhcjtrKGFflw1N0vw2xHY0NJ6PU-uTrMQUd0-t9KcDu9jbdaMdWKelbk3YNAij8Xm4ueXTbWeww2LllzIdv6t_1aVPTtf-hNXFKo61VqLYApDlApdqRMijknO52GYaDv_dRHP3X1U9_7qVXtefP3FqeO3wZWgB-BXEtha9Ofpx9XvQOy9a3Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393017200</pqid></control><display><type>article</type><title>Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Miyazaki, Junichi ; Ikuta, Tetsuro ; Watsuji, Tomo-o ; Abe, Mariko ; Yamamoto, Masahiro ; Nakagawa, Satoshi ; Takaki, Yoshihiro ; Nakamura, Kentaro ; Takai, Ken</creator><creatorcontrib>Miyazaki, Junichi ; Ikuta, Tetsuro ; Watsuji, Tomo-o ; Abe, Mariko ; Yamamoto, Masahiro ; Nakagawa, Satoshi ; Takaki, Yoshihiro ; Nakamura, Kentaro ; Takai, Ken</creatorcontrib><description>Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H 2 ) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H 2 oxidation has not yet been determined. Here, we demonstrate that the Campylobacterota endosymbionts of the gastropod Alviniconcha marisindica in the Kairei and Edmond fields (kAlv and eAlv populations, respectively) of the Indian Ocean, utilize H 2 in response to their physical and environmental H 2 conditions, although the 16S rRNA gene sequence of both the endosymbionts shared 99.6% identity. A thermodynamic calculation using in situ H 2 and hydrogen sulfide (H 2 S) concentrations indicated that chemosynthetic symbiosis could be supported by metabolic energy via H 2 oxidation, particularly for the kAlv holobiont. Metabolic activity measurements showed that both the living individuals and the gill tissues consumed H 2 and H 2 S at similar levels. Moreover, a combination of fluorescence in situ hybridization, quantitative transcript analyses, and enzymatic activity measurements showed that the kAlv endosymbiont expressed the genes and enzymes for both H 2 - and sulfur-oxidations. These results suggest that both H 2 and H 2 S could serve as the primary energy sources for the kAlv holobiont. The eAlv holobiont had the ability to utilize H 2 , but the gene expression and enzyme activity for hydrogenases were much lower than for sulfur-oxidation enzymes. These results suggest that the energy acquisitions of A. marisindica holobionts are dependent on H 2 - and sulfur-oxidation in the H 2 -enriched Kairei field and that the mechanism of dual metabolism is controlled by the in situ H 2 concentration.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-020-0605-7</identifier><identifier>PMID: 32051527</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/32 ; 38/77 ; 631/326/47 ; 631/45/47 ; 704/47 ; 82 ; 82/80 ; Animals ; Bacteria - genetics ; Biomedical and Life Sciences ; Campylobacter - physiology ; Deep sea ; Ecology ; Endosymbionts ; Energy Metabolism ; Energy sources ; Enzymatic activity ; Enzyme activity ; Enzymes ; Evolutionary Biology ; Fluorescence ; Fluorescence in situ hybridization ; Gene expression ; Gills - microbiology ; Hydrogen sulfide ; In Situ Hybridization, Fluorescence ; Indian Ocean ; Invertebrates ; Life Sciences ; Metabolism ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Oxidation ; Oxidation-Reduction ; Phylogeny ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Snails - microbiology ; Snails - physiology ; Sulfur ; Symbiosis ; Transcription</subject><ispartof>The ISME Journal, 2020-05, Vol.14 (5), p.1273-1289</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-2a7e4145533f7e72809685d0542c8dba3d7737c804afddfa70aa30ea23da45a23</citedby><cites>FETCH-LOGICAL-c536t-2a7e4145533f7e72809685d0542c8dba3d7737c804afddfa70aa30ea23da45a23</cites><orcidid>0000-0002-1247-4946 ; 0000-0003-4043-376X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174374/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174374/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32051527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miyazaki, Junichi</creatorcontrib><creatorcontrib>Ikuta, Tetsuro</creatorcontrib><creatorcontrib>Watsuji, Tomo-o</creatorcontrib><creatorcontrib>Abe, Mariko</creatorcontrib><creatorcontrib>Yamamoto, Masahiro</creatorcontrib><creatorcontrib>Nakagawa, Satoshi</creatorcontrib><creatorcontrib>Takaki, Yoshihiro</creatorcontrib><creatorcontrib>Nakamura, Kentaro</creatorcontrib><creatorcontrib>Takai, Ken</creatorcontrib><title>Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H 2 ) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H 2 oxidation has not yet been determined. Here, we demonstrate that the Campylobacterota endosymbionts of the gastropod Alviniconcha marisindica in the Kairei and Edmond fields (kAlv and eAlv populations, respectively) of the Indian Ocean, utilize H 2 in response to their physical and environmental H 2 conditions, although the 16S rRNA gene sequence of both the endosymbionts shared 99.6% identity. A thermodynamic calculation using in situ H 2 and hydrogen sulfide (H 2 S) concentrations indicated that chemosynthetic symbiosis could be supported by metabolic energy via H 2 oxidation, particularly for the kAlv holobiont. Metabolic activity measurements showed that both the living individuals and the gill tissues consumed H 2 and H 2 S at similar levels. Moreover, a combination of fluorescence in situ hybridization, quantitative transcript analyses, and enzymatic activity measurements showed that the kAlv endosymbiont expressed the genes and enzymes for both H 2 - and sulfur-oxidations. These results suggest that both H 2 and H 2 S could serve as the primary energy sources for the kAlv holobiont. The eAlv holobiont had the ability to utilize H 2 , but the gene expression and enzyme activity for hydrogenases were much lower than for sulfur-oxidation enzymes. These results suggest that the energy acquisitions of A. marisindica holobionts are dependent on H 2 - and sulfur-oxidation in the H 2 -enriched Kairei field and that the mechanism of dual metabolism is controlled by the in situ H 2 concentration.</description><subject>38/32</subject><subject>38/77</subject><subject>631/326/47</subject><subject>631/45/47</subject><subject>704/47</subject><subject>82</subject><subject>82/80</subject><subject>Animals</subject><subject>Bacteria - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Campylobacter - physiology</subject><subject>Deep sea</subject><subject>Ecology</subject><subject>Endosymbionts</subject><subject>Energy Metabolism</subject><subject>Energy sources</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Evolutionary Biology</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Gene expression</subject><subject>Gills - microbiology</subject><subject>Hydrogen sulfide</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Indian Ocean</subject><subject>Invertebrates</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Phylogeny</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Snails - microbiology</subject><subject>Snails - physiology</subject><subject>Sulfur</subject><subject>Symbiosis</subject><subject>Transcription</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU2LHCEQhiUkZDeT_IBcgpBLLp0ttW17LoFl8rGBhVySs1Tb9oyLrRO1F-bfr5vZTD5gQajCeuq1ypeQ1wzeMxD9RW6ZWHcNcGigA9moJ-ScKckaJRQ8PeUdPyMvcr4BkKrr1HNyJjhIJrk6J_uPC3pqg03bA51twSF6l2caJ1p2lm5w3h98HNAUm2LBSo4xH-bBxVCoC78gs7NzvQw1L87QHNB5eulvXXAmBrNDOmNy2YXRGXxJnk3os331EFfkx-dP3zdXzfW3L183l9eNkaIrDUdlW9ZKKcSkrOI9rLtejiBbbvpxQDGquqTpocVpHCdUgCjAIhcjtrKGFflw1N0vw2xHY0NJ6PU-uTrMQUd0-t9KcDu9jbdaMdWKelbk3YNAij8Xm4ueXTbWeww2LllzIdv6t_1aVPTtf-hNXFKo61VqLYApDlApdqRMijknO52GYaDv_dRHP3X1U9_7qVXtefP3FqeO3wZWgB-BXEtha9Ofpx9XvQOy9a3Z</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Miyazaki, Junichi</creator><creator>Ikuta, Tetsuro</creator><creator>Watsuji, Tomo-o</creator><creator>Abe, Mariko</creator><creator>Yamamoto, Masahiro</creator><creator>Nakagawa, Satoshi</creator><creator>Takaki, Yoshihiro</creator><creator>Nakamura, Kentaro</creator><creator>Takai, Ken</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1247-4946</orcidid><orcidid>https://orcid.org/0000-0003-4043-376X</orcidid></search><sort><creationdate>20200501</creationdate><title>Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica</title><author>Miyazaki, Junichi ; Ikuta, Tetsuro ; Watsuji, Tomo-o ; Abe, Mariko ; Yamamoto, Masahiro ; Nakagawa, Satoshi ; Takaki, Yoshihiro ; Nakamura, Kentaro ; Takai, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-2a7e4145533f7e72809685d0542c8dba3d7737c804afddfa70aa30ea23da45a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38/32</topic><topic>38/77</topic><topic>631/326/47</topic><topic>631/45/47</topic><topic>704/47</topic><topic>82</topic><topic>82/80</topic><topic>Animals</topic><topic>Bacteria - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Campylobacter - physiology</topic><topic>Deep sea</topic><topic>Ecology</topic><topic>Endosymbionts</topic><topic>Energy Metabolism</topic><topic>Energy sources</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Evolutionary Biology</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Gene expression</topic><topic>Gills - microbiology</topic><topic>Hydrogen sulfide</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Indian Ocean</topic><topic>Invertebrates</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Phylogeny</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Snails - microbiology</topic><topic>Snails - physiology</topic><topic>Sulfur</topic><topic>Symbiosis</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyazaki, Junichi</creatorcontrib><creatorcontrib>Ikuta, Tetsuro</creatorcontrib><creatorcontrib>Watsuji, Tomo-o</creatorcontrib><creatorcontrib>Abe, Mariko</creatorcontrib><creatorcontrib>Yamamoto, Masahiro</creatorcontrib><creatorcontrib>Nakagawa, Satoshi</creatorcontrib><creatorcontrib>Takaki, Yoshihiro</creatorcontrib><creatorcontrib>Nakamura, Kentaro</creatorcontrib><creatorcontrib>Takai, Ken</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyazaki, Junichi</au><au>Ikuta, Tetsuro</au><au>Watsuji, Tomo-o</au><au>Abe, Mariko</au><au>Yamamoto, Masahiro</au><au>Nakagawa, Satoshi</au><au>Takaki, Yoshihiro</au><au>Nakamura, Kentaro</au><au>Takai, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>14</volume><issue>5</issue><spage>1273</spage><epage>1289</epage><pages>1273-1289</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H 2 ) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H 2 oxidation has not yet been determined. Here, we demonstrate that the Campylobacterota endosymbionts of the gastropod Alviniconcha marisindica in the Kairei and Edmond fields (kAlv and eAlv populations, respectively) of the Indian Ocean, utilize H 2 in response to their physical and environmental H 2 conditions, although the 16S rRNA gene sequence of both the endosymbionts shared 99.6% identity. A thermodynamic calculation using in situ H 2 and hydrogen sulfide (H 2 S) concentrations indicated that chemosynthetic symbiosis could be supported by metabolic energy via H 2 oxidation, particularly for the kAlv holobiont. Metabolic activity measurements showed that both the living individuals and the gill tissues consumed H 2 and H 2 S at similar levels. Moreover, a combination of fluorescence in situ hybridization, quantitative transcript analyses, and enzymatic activity measurements showed that the kAlv endosymbiont expressed the genes and enzymes for both H 2 - and sulfur-oxidations. These results suggest that both H 2 and H 2 S could serve as the primary energy sources for the kAlv holobiont. The eAlv holobiont had the ability to utilize H 2 , but the gene expression and enzyme activity for hydrogenases were much lower than for sulfur-oxidation enzymes. These results suggest that the energy acquisitions of A. marisindica holobionts are dependent on H 2 - and sulfur-oxidation in the H 2 -enriched Kairei field and that the mechanism of dual metabolism is controlled by the in situ H 2 concentration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32051527</pmid><doi>10.1038/s41396-020-0605-7</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1247-4946</orcidid><orcidid>https://orcid.org/0000-0003-4043-376X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2020-05, Vol.14 (5), p.1273-1289
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmed_primary_32051527
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 38/32
38/77
631/326/47
631/45/47
704/47
82
82/80
Animals
Bacteria - genetics
Biomedical and Life Sciences
Campylobacter - physiology
Deep sea
Ecology
Endosymbionts
Energy Metabolism
Energy sources
Enzymatic activity
Enzyme activity
Enzymes
Evolutionary Biology
Fluorescence
Fluorescence in situ hybridization
Gene expression
Gills - microbiology
Hydrogen sulfide
In Situ Hybridization, Fluorescence
Indian Ocean
Invertebrates
Life Sciences
Metabolism
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Oxidation
Oxidation-Reduction
Phylogeny
RNA, Ribosomal, 16S - genetics
rRNA 16S
Snails - microbiology
Snails - physiology
Sulfur
Symbiosis
Transcription
title Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T17%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20energy%20metabolism%20of%20the%20Campylobacterota%20endosymbiont%20in%20the%20chemosynthetic%20snail%20Alviniconcha%20marisindica&rft.jtitle=The%20ISME%20Journal&rft.au=Miyazaki,%20Junichi&rft.date=2020-05-01&rft.volume=14&rft.issue=5&rft.spage=1273&rft.epage=1289&rft.pages=1273-1289&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-020-0605-7&rft_dat=%3Cproquest_pubme%3E2354736893%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393017200&rft_id=info:pmid/32051527&rfr_iscdi=true