Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica
Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H 2 ) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H 2 oxidation has not yet been determined. Here, we demonstrate...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2020-05, Vol.14 (5), p.1273-1289 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1289 |
---|---|
container_issue | 5 |
container_start_page | 1273 |
container_title | The ISME Journal |
container_volume | 14 |
creator | Miyazaki, Junichi Ikuta, Tetsuro Watsuji, Tomo-o Abe, Mariko Yamamoto, Masahiro Nakagawa, Satoshi Takaki, Yoshihiro Nakamura, Kentaro Takai, Ken |
description | Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H
2
) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H
2
oxidation has not yet been determined. Here, we demonstrate that the
Campylobacterota
endosymbionts of the gastropod
Alviniconcha marisindica
in the Kairei and Edmond fields (kAlv and eAlv populations, respectively) of the Indian Ocean, utilize H
2
in response to their physical and environmental H
2
conditions, although the 16S rRNA gene sequence of both the endosymbionts shared 99.6% identity. A thermodynamic calculation using in situ H
2
and hydrogen sulfide (H
2
S) concentrations indicated that chemosynthetic symbiosis could be supported by metabolic energy via H
2
oxidation, particularly for the kAlv holobiont. Metabolic activity measurements showed that both the living individuals and the gill tissues consumed H
2
and H
2
S at similar levels. Moreover, a combination of fluorescence in situ hybridization, quantitative transcript analyses, and enzymatic activity measurements showed that the kAlv endosymbiont expressed the genes and enzymes for both H
2
- and sulfur-oxidations. These results suggest that both H
2
and H
2
S could serve as the primary energy sources for the kAlv holobiont. The eAlv holobiont had the ability to utilize H
2
, but the gene expression and enzyme activity for hydrogenases were much lower than for sulfur-oxidation enzymes. These results suggest that the energy acquisitions of
A. marisindica
holobionts are dependent on H
2
- and sulfur-oxidation in the H
2
-enriched Kairei field and that the mechanism of dual metabolism is controlled by the in situ H
2
concentration. |
doi_str_mv | 10.1038/s41396-020-0605-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32051527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354736893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-2a7e4145533f7e72809685d0542c8dba3d7737c804afddfa70aa30ea23da45a23</originalsourceid><addsrcrecordid>eNp1kU2LHCEQhiUkZDeT_IBcgpBLLp0ttW17LoFl8rGBhVySs1Tb9oyLrRO1F-bfr5vZTD5gQajCeuq1ypeQ1wzeMxD9RW6ZWHcNcGigA9moJ-ScKckaJRQ8PeUdPyMvcr4BkKrr1HNyJjhIJrk6J_uPC3pqg03bA51twSF6l2caJ1p2lm5w3h98HNAUm2LBSo4xH-bBxVCoC78gs7NzvQw1L87QHNB5eulvXXAmBrNDOmNy2YXRGXxJnk3os331EFfkx-dP3zdXzfW3L183l9eNkaIrDUdlW9ZKKcSkrOI9rLtejiBbbvpxQDGquqTpocVpHCdUgCjAIhcjtrKGFflw1N0vw2xHY0NJ6PU-uTrMQUd0-t9KcDu9jbdaMdWKelbk3YNAij8Xm4ueXTbWeww2LllzIdv6t_1aVPTtf-hNXFKo61VqLYApDlApdqRMijknO52GYaDv_dRHP3X1U9_7qVXtefP3FqeO3wZWgB-BXEtha9Ofpx9XvQOy9a3Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393017200</pqid></control><display><type>article</type><title>Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Miyazaki, Junichi ; Ikuta, Tetsuro ; Watsuji, Tomo-o ; Abe, Mariko ; Yamamoto, Masahiro ; Nakagawa, Satoshi ; Takaki, Yoshihiro ; Nakamura, Kentaro ; Takai, Ken</creator><creatorcontrib>Miyazaki, Junichi ; Ikuta, Tetsuro ; Watsuji, Tomo-o ; Abe, Mariko ; Yamamoto, Masahiro ; Nakagawa, Satoshi ; Takaki, Yoshihiro ; Nakamura, Kentaro ; Takai, Ken</creatorcontrib><description>Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H
2
) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H
2
oxidation has not yet been determined. Here, we demonstrate that the
Campylobacterota
endosymbionts of the gastropod
Alviniconcha marisindica
in the Kairei and Edmond fields (kAlv and eAlv populations, respectively) of the Indian Ocean, utilize H
2
in response to their physical and environmental H
2
conditions, although the 16S rRNA gene sequence of both the endosymbionts shared 99.6% identity. A thermodynamic calculation using in situ H
2
and hydrogen sulfide (H
2
S) concentrations indicated that chemosynthetic symbiosis could be supported by metabolic energy via H
2
oxidation, particularly for the kAlv holobiont. Metabolic activity measurements showed that both the living individuals and the gill tissues consumed H
2
and H
2
S at similar levels. Moreover, a combination of fluorescence in situ hybridization, quantitative transcript analyses, and enzymatic activity measurements showed that the kAlv endosymbiont expressed the genes and enzymes for both H
2
- and sulfur-oxidations. These results suggest that both H
2
and H
2
S could serve as the primary energy sources for the kAlv holobiont. The eAlv holobiont had the ability to utilize H
2
, but the gene expression and enzyme activity for hydrogenases were much lower than for sulfur-oxidation enzymes. These results suggest that the energy acquisitions of
A. marisindica
holobionts are dependent on H
2
- and sulfur-oxidation in the H
2
-enriched Kairei field and that the mechanism of dual metabolism is controlled by the in situ H
2
concentration.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-020-0605-7</identifier><identifier>PMID: 32051527</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/32 ; 38/77 ; 631/326/47 ; 631/45/47 ; 704/47 ; 82 ; 82/80 ; Animals ; Bacteria - genetics ; Biomedical and Life Sciences ; Campylobacter - physiology ; Deep sea ; Ecology ; Endosymbionts ; Energy Metabolism ; Energy sources ; Enzymatic activity ; Enzyme activity ; Enzymes ; Evolutionary Biology ; Fluorescence ; Fluorescence in situ hybridization ; Gene expression ; Gills - microbiology ; Hydrogen sulfide ; In Situ Hybridization, Fluorescence ; Indian Ocean ; Invertebrates ; Life Sciences ; Metabolism ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Oxidation ; Oxidation-Reduction ; Phylogeny ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Snails - microbiology ; Snails - physiology ; Sulfur ; Symbiosis ; Transcription</subject><ispartof>The ISME Journal, 2020-05, Vol.14 (5), p.1273-1289</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-2a7e4145533f7e72809685d0542c8dba3d7737c804afddfa70aa30ea23da45a23</citedby><cites>FETCH-LOGICAL-c536t-2a7e4145533f7e72809685d0542c8dba3d7737c804afddfa70aa30ea23da45a23</cites><orcidid>0000-0002-1247-4946 ; 0000-0003-4043-376X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174374/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174374/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32051527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miyazaki, Junichi</creatorcontrib><creatorcontrib>Ikuta, Tetsuro</creatorcontrib><creatorcontrib>Watsuji, Tomo-o</creatorcontrib><creatorcontrib>Abe, Mariko</creatorcontrib><creatorcontrib>Yamamoto, Masahiro</creatorcontrib><creatorcontrib>Nakagawa, Satoshi</creatorcontrib><creatorcontrib>Takaki, Yoshihiro</creatorcontrib><creatorcontrib>Nakamura, Kentaro</creatorcontrib><creatorcontrib>Takai, Ken</creatorcontrib><title>Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H
2
) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H
2
oxidation has not yet been determined. Here, we demonstrate that the
Campylobacterota
endosymbionts of the gastropod
Alviniconcha marisindica
in the Kairei and Edmond fields (kAlv and eAlv populations, respectively) of the Indian Ocean, utilize H
2
in response to their physical and environmental H
2
conditions, although the 16S rRNA gene sequence of both the endosymbionts shared 99.6% identity. A thermodynamic calculation using in situ H
2
and hydrogen sulfide (H
2
S) concentrations indicated that chemosynthetic symbiosis could be supported by metabolic energy via H
2
oxidation, particularly for the kAlv holobiont. Metabolic activity measurements showed that both the living individuals and the gill tissues consumed H
2
and H
2
S at similar levels. Moreover, a combination of fluorescence in situ hybridization, quantitative transcript analyses, and enzymatic activity measurements showed that the kAlv endosymbiont expressed the genes and enzymes for both H
2
- and sulfur-oxidations. These results suggest that both H
2
and H
2
S could serve as the primary energy sources for the kAlv holobiont. The eAlv holobiont had the ability to utilize H
2
, but the gene expression and enzyme activity for hydrogenases were much lower than for sulfur-oxidation enzymes. These results suggest that the energy acquisitions of
A. marisindica
holobionts are dependent on H
2
- and sulfur-oxidation in the H
2
-enriched Kairei field and that the mechanism of dual metabolism is controlled by the in situ H
2
concentration.</description><subject>38/32</subject><subject>38/77</subject><subject>631/326/47</subject><subject>631/45/47</subject><subject>704/47</subject><subject>82</subject><subject>82/80</subject><subject>Animals</subject><subject>Bacteria - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Campylobacter - physiology</subject><subject>Deep sea</subject><subject>Ecology</subject><subject>Endosymbionts</subject><subject>Energy Metabolism</subject><subject>Energy sources</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Evolutionary Biology</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Gene expression</subject><subject>Gills - microbiology</subject><subject>Hydrogen sulfide</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Indian Ocean</subject><subject>Invertebrates</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Phylogeny</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Snails - microbiology</subject><subject>Snails - physiology</subject><subject>Sulfur</subject><subject>Symbiosis</subject><subject>Transcription</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU2LHCEQhiUkZDeT_IBcgpBLLp0ttW17LoFl8rGBhVySs1Tb9oyLrRO1F-bfr5vZTD5gQajCeuq1ypeQ1wzeMxD9RW6ZWHcNcGigA9moJ-ScKckaJRQ8PeUdPyMvcr4BkKrr1HNyJjhIJrk6J_uPC3pqg03bA51twSF6l2caJ1p2lm5w3h98HNAUm2LBSo4xH-bBxVCoC78gs7NzvQw1L87QHNB5eulvXXAmBrNDOmNy2YXRGXxJnk3os331EFfkx-dP3zdXzfW3L183l9eNkaIrDUdlW9ZKKcSkrOI9rLtejiBbbvpxQDGquqTpocVpHCdUgCjAIhcjtrKGFflw1N0vw2xHY0NJ6PU-uTrMQUd0-t9KcDu9jbdaMdWKelbk3YNAij8Xm4ueXTbWeww2LllzIdv6t_1aVPTtf-hNXFKo61VqLYApDlApdqRMijknO52GYaDv_dRHP3X1U9_7qVXtefP3FqeO3wZWgB-BXEtha9Ofpx9XvQOy9a3Z</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Miyazaki, Junichi</creator><creator>Ikuta, Tetsuro</creator><creator>Watsuji, Tomo-o</creator><creator>Abe, Mariko</creator><creator>Yamamoto, Masahiro</creator><creator>Nakagawa, Satoshi</creator><creator>Takaki, Yoshihiro</creator><creator>Nakamura, Kentaro</creator><creator>Takai, Ken</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1247-4946</orcidid><orcidid>https://orcid.org/0000-0003-4043-376X</orcidid></search><sort><creationdate>20200501</creationdate><title>Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica</title><author>Miyazaki, Junichi ; Ikuta, Tetsuro ; Watsuji, Tomo-o ; Abe, Mariko ; Yamamoto, Masahiro ; Nakagawa, Satoshi ; Takaki, Yoshihiro ; Nakamura, Kentaro ; Takai, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-2a7e4145533f7e72809685d0542c8dba3d7737c804afddfa70aa30ea23da45a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38/32</topic><topic>38/77</topic><topic>631/326/47</topic><topic>631/45/47</topic><topic>704/47</topic><topic>82</topic><topic>82/80</topic><topic>Animals</topic><topic>Bacteria - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Campylobacter - physiology</topic><topic>Deep sea</topic><topic>Ecology</topic><topic>Endosymbionts</topic><topic>Energy Metabolism</topic><topic>Energy sources</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Evolutionary Biology</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Gene expression</topic><topic>Gills - microbiology</topic><topic>Hydrogen sulfide</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Indian Ocean</topic><topic>Invertebrates</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Phylogeny</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Snails - microbiology</topic><topic>Snails - physiology</topic><topic>Sulfur</topic><topic>Symbiosis</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyazaki, Junichi</creatorcontrib><creatorcontrib>Ikuta, Tetsuro</creatorcontrib><creatorcontrib>Watsuji, Tomo-o</creatorcontrib><creatorcontrib>Abe, Mariko</creatorcontrib><creatorcontrib>Yamamoto, Masahiro</creatorcontrib><creatorcontrib>Nakagawa, Satoshi</creatorcontrib><creatorcontrib>Takaki, Yoshihiro</creatorcontrib><creatorcontrib>Nakamura, Kentaro</creatorcontrib><creatorcontrib>Takai, Ken</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyazaki, Junichi</au><au>Ikuta, Tetsuro</au><au>Watsuji, Tomo-o</au><au>Abe, Mariko</au><au>Yamamoto, Masahiro</au><au>Nakagawa, Satoshi</au><au>Takaki, Yoshihiro</au><au>Nakamura, Kentaro</au><au>Takai, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>14</volume><issue>5</issue><spage>1273</spage><epage>1289</epage><pages>1273-1289</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H
2
) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H
2
oxidation has not yet been determined. Here, we demonstrate that the
Campylobacterota
endosymbionts of the gastropod
Alviniconcha marisindica
in the Kairei and Edmond fields (kAlv and eAlv populations, respectively) of the Indian Ocean, utilize H
2
in response to their physical and environmental H
2
conditions, although the 16S rRNA gene sequence of both the endosymbionts shared 99.6% identity. A thermodynamic calculation using in situ H
2
and hydrogen sulfide (H
2
S) concentrations indicated that chemosynthetic symbiosis could be supported by metabolic energy via H
2
oxidation, particularly for the kAlv holobiont. Metabolic activity measurements showed that both the living individuals and the gill tissues consumed H
2
and H
2
S at similar levels. Moreover, a combination of fluorescence in situ hybridization, quantitative transcript analyses, and enzymatic activity measurements showed that the kAlv endosymbiont expressed the genes and enzymes for both H
2
- and sulfur-oxidations. These results suggest that both H
2
and H
2
S could serve as the primary energy sources for the kAlv holobiont. The eAlv holobiont had the ability to utilize H
2
, but the gene expression and enzyme activity for hydrogenases were much lower than for sulfur-oxidation enzymes. These results suggest that the energy acquisitions of
A. marisindica
holobionts are dependent on H
2
- and sulfur-oxidation in the H
2
-enriched Kairei field and that the mechanism of dual metabolism is controlled by the in situ H
2
concentration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32051527</pmid><doi>10.1038/s41396-020-0605-7</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1247-4946</orcidid><orcidid>https://orcid.org/0000-0003-4043-376X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2020-05, Vol.14 (5), p.1273-1289 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmed_primary_32051527 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 38/32 38/77 631/326/47 631/45/47 704/47 82 82/80 Animals Bacteria - genetics Biomedical and Life Sciences Campylobacter - physiology Deep sea Ecology Endosymbionts Energy Metabolism Energy sources Enzymatic activity Enzyme activity Enzymes Evolutionary Biology Fluorescence Fluorescence in situ hybridization Gene expression Gills - microbiology Hydrogen sulfide In Situ Hybridization, Fluorescence Indian Ocean Invertebrates Life Sciences Metabolism Microbial Ecology Microbial Genetics and Genomics Microbiology Oxidation Oxidation-Reduction Phylogeny RNA, Ribosomal, 16S - genetics rRNA 16S Snails - microbiology Snails - physiology Sulfur Symbiosis Transcription |
title | Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T17%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20energy%20metabolism%20of%20the%20Campylobacterota%20endosymbiont%20in%20the%20chemosynthetic%20snail%20Alviniconcha%20marisindica&rft.jtitle=The%20ISME%20Journal&rft.au=Miyazaki,%20Junichi&rft.date=2020-05-01&rft.volume=14&rft.issue=5&rft.spage=1273&rft.epage=1289&rft.pages=1273-1289&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-020-0605-7&rft_dat=%3Cproquest_pubme%3E2354736893%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393017200&rft_id=info:pmid/32051527&rfr_iscdi=true |