Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework

Full Configuration Interaction Quantum Monte Carlo (FCIQMC) has been effectively applied to very large configuration interaction (CI) problems and was recently adapted for use as an active space solver and combined with orbital optimization. In this work, we detail an approach within FCIQMC to allow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-02, Vol.152 (5), p.054101-054101
Hauptverfasser: Anderson, Robert J., Shiozaki, Toru, Booth, George H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 054101
container_issue 5
container_start_page 054101
container_title The Journal of chemical physics
container_volume 152
creator Anderson, Robert J.
Shiozaki, Toru
Booth, George H.
description Full Configuration Interaction Quantum Monte Carlo (FCIQMC) has been effectively applied to very large configuration interaction (CI) problems and was recently adapted for use as an active space solver and combined with orbital optimization. In this work, we detail an approach within FCIQMC to allow for efficient sampling of fully internally contracted multireference perturbation theories within the same stochastic framework. Schemes are described to allow for the close control over the resolution of stochastic sampling of the effective higher-body intermediates within the active space. It is found that while complete active space second-order perturbation theory seems less amenable to a stochastic reformulation, strongly contracted N-Electron Valence second-order Perturbation Theory (NEVPT2) is far more stable, requiring a similar number of walkers to converge the sc-NEVPT2 expectation values as to converge the underlying CI problem. We demonstrate the application of the stochastic approach to the computation of sc-NEVPT2 within a (24, 24) active space in a biologically relevant system and show that small numbers of walkers are sufficient for a faithful sampling of the sc-NEVPT2 energy to chemical accuracy, despite the active space already exceeding the limits of practicality for traditional approaches. This raises prospects of an efficient stochastic solver for multireference chemical problems requiring large active spaces, with an accurate treatment of external orbitals.
doi_str_mv 10.1063/1.5140086
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32035465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353021654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-a8cfa73231245fa599c78db86e0f47c4b05957953cfd98d95b9b9498c64a58ae3</originalsourceid><addsrcrecordid>eNp90VtrFDEYBuAgil2rF_4BCXijwtRkcpjJpSz1ABVv9HrIZL50U2eSaQ4t_Sn-W7PuWkHBq4Tw5Et4X4SeU3JGiWRv6ZmgnJBePkAbSnrVdFKRh2hDSEsbJYk8QU9SuiKE0K7lj9EJawkTXIoN-nFurTMOfMbaTzjlYHY6ZWfwUubsIliI4A3gFWIucdTZBY_zDkK8wzZEPOt4CVib7G4Ap1UbSPjW5Z3zWGNb5hmb4K27LPFw1fkMcc_r_rpon8uCP4d6iLc6zgHbqBe4DfH7U_TI6jnBs-N6ir69P_-6_dhcfPnwafvuojGcq9zo3ljdsZbRlgurhVKm66exl0As7wwfiVCiU4IZO6l-UmJUo-KqN5Jr0Wtgp-jVYe4aw3WBlIfFJQPzrD2EkoaWCVZzlIJX-vIvehVK9PV3e0WolFzSql4flIkhpZrgsEa36Hg3UDLs-xrocOyr2hfHiWVcYLqXvwuq4M0BJOPyrwTvzU2IfyYN62T_h_99-iehc67w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350166461</pqid></control><display><type>article</type><title>Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Anderson, Robert J. ; Shiozaki, Toru ; Booth, George H.</creator><creatorcontrib>Anderson, Robert J. ; Shiozaki, Toru ; Booth, George H.</creatorcontrib><description>Full Configuration Interaction Quantum Monte Carlo (FCIQMC) has been effectively applied to very large configuration interaction (CI) problems and was recently adapted for use as an active space solver and combined with orbital optimization. In this work, we detail an approach within FCIQMC to allow for efficient sampling of fully internally contracted multireference perturbation theories within the same stochastic framework. Schemes are described to allow for the close control over the resolution of stochastic sampling of the effective higher-body intermediates within the active space. It is found that while complete active space second-order perturbation theory seems less amenable to a stochastic reformulation, strongly contracted N-Electron Valence second-order Perturbation Theory (NEVPT2) is far more stable, requiring a similar number of walkers to converge the sc-NEVPT2 expectation values as to converge the underlying CI problem. We demonstrate the application of the stochastic approach to the computation of sc-NEVPT2 within a (24, 24) active space in a biologically relevant system and show that small numbers of walkers are sufficient for a faithful sampling of the sc-NEVPT2 energy to chemical accuracy, despite the active space already exceeding the limits of practicality for traditional approaches. This raises prospects of an efficient stochastic solver for multireference chemical problems requiring large active spaces, with an accurate treatment of external orbitals.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5140086</identifier><identifier>PMID: 32035465</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Configuration interaction ; Convergence ; Optimization ; Organic chemistry ; Perturbation theory ; Sampling</subject><ispartof>The Journal of chemical physics, 2020-02, Vol.152 (5), p.054101-054101</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-a8cfa73231245fa599c78db86e0f47c4b05957953cfd98d95b9b9498c64a58ae3</citedby><cites>FETCH-LOGICAL-c449t-a8cfa73231245fa599c78db86e0f47c4b05957953cfd98d95b9b9498c64a58ae3</cites><orcidid>0000-0003-2503-4904 ; 0000-0002-0955-3862 ; 0000-0001-8578-1077 ; 0000000209553862 ; 0000000185781077 ; 0000000325034904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5140086$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32035465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Robert J.</creatorcontrib><creatorcontrib>Shiozaki, Toru</creatorcontrib><creatorcontrib>Booth, George H.</creatorcontrib><title>Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Full Configuration Interaction Quantum Monte Carlo (FCIQMC) has been effectively applied to very large configuration interaction (CI) problems and was recently adapted for use as an active space solver and combined with orbital optimization. In this work, we detail an approach within FCIQMC to allow for efficient sampling of fully internally contracted multireference perturbation theories within the same stochastic framework. Schemes are described to allow for the close control over the resolution of stochastic sampling of the effective higher-body intermediates within the active space. It is found that while complete active space second-order perturbation theory seems less amenable to a stochastic reformulation, strongly contracted N-Electron Valence second-order Perturbation Theory (NEVPT2) is far more stable, requiring a similar number of walkers to converge the sc-NEVPT2 expectation values as to converge the underlying CI problem. We demonstrate the application of the stochastic approach to the computation of sc-NEVPT2 within a (24, 24) active space in a biologically relevant system and show that small numbers of walkers are sufficient for a faithful sampling of the sc-NEVPT2 energy to chemical accuracy, despite the active space already exceeding the limits of practicality for traditional approaches. This raises prospects of an efficient stochastic solver for multireference chemical problems requiring large active spaces, with an accurate treatment of external orbitals.</description><subject>Configuration interaction</subject><subject>Convergence</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Perturbation theory</subject><subject>Sampling</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90VtrFDEYBuAgil2rF_4BCXijwtRkcpjJpSz1ABVv9HrIZL50U2eSaQ4t_Sn-W7PuWkHBq4Tw5Et4X4SeU3JGiWRv6ZmgnJBePkAbSnrVdFKRh2hDSEsbJYk8QU9SuiKE0K7lj9EJawkTXIoN-nFurTMOfMbaTzjlYHY6ZWfwUubsIliI4A3gFWIucdTZBY_zDkK8wzZEPOt4CVib7G4Ap1UbSPjW5Z3zWGNb5hmb4K27LPFw1fkMcc_r_rpon8uCP4d6iLc6zgHbqBe4DfH7U_TI6jnBs-N6ir69P_-6_dhcfPnwafvuojGcq9zo3ljdsZbRlgurhVKm66exl0As7wwfiVCiU4IZO6l-UmJUo-KqN5Jr0Wtgp-jVYe4aw3WBlIfFJQPzrD2EkoaWCVZzlIJX-vIvehVK9PV3e0WolFzSql4flIkhpZrgsEa36Hg3UDLs-xrocOyr2hfHiWVcYLqXvwuq4M0BJOPyrwTvzU2IfyYN62T_h_99-iehc67w</recordid><startdate>20200207</startdate><enddate>20200207</enddate><creator>Anderson, Robert J.</creator><creator>Shiozaki, Toru</creator><creator>Booth, George H.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2503-4904</orcidid><orcidid>https://orcid.org/0000-0002-0955-3862</orcidid><orcidid>https://orcid.org/0000-0001-8578-1077</orcidid><orcidid>https://orcid.org/0000000209553862</orcidid><orcidid>https://orcid.org/0000000185781077</orcidid><orcidid>https://orcid.org/0000000325034904</orcidid></search><sort><creationdate>20200207</creationdate><title>Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework</title><author>Anderson, Robert J. ; Shiozaki, Toru ; Booth, George H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-a8cfa73231245fa599c78db86e0f47c4b05957953cfd98d95b9b9498c64a58ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Configuration interaction</topic><topic>Convergence</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Perturbation theory</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Robert J.</creatorcontrib><creatorcontrib>Shiozaki, Toru</creatorcontrib><creatorcontrib>Booth, George H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Robert J.</au><au>Shiozaki, Toru</au><au>Booth, George H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-02-07</date><risdate>2020</risdate><volume>152</volume><issue>5</issue><spage>054101</spage><epage>054101</epage><pages>054101-054101</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Full Configuration Interaction Quantum Monte Carlo (FCIQMC) has been effectively applied to very large configuration interaction (CI) problems and was recently adapted for use as an active space solver and combined with orbital optimization. In this work, we detail an approach within FCIQMC to allow for efficient sampling of fully internally contracted multireference perturbation theories within the same stochastic framework. Schemes are described to allow for the close control over the resolution of stochastic sampling of the effective higher-body intermediates within the active space. It is found that while complete active space second-order perturbation theory seems less amenable to a stochastic reformulation, strongly contracted N-Electron Valence second-order Perturbation Theory (NEVPT2) is far more stable, requiring a similar number of walkers to converge the sc-NEVPT2 expectation values as to converge the underlying CI problem. We demonstrate the application of the stochastic approach to the computation of sc-NEVPT2 within a (24, 24) active space in a biologically relevant system and show that small numbers of walkers are sufficient for a faithful sampling of the sc-NEVPT2 energy to chemical accuracy, despite the active space already exceeding the limits of practicality for traditional approaches. This raises prospects of an efficient stochastic solver for multireference chemical problems requiring large active spaces, with an accurate treatment of external orbitals.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32035465</pmid><doi>10.1063/1.5140086</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2503-4904</orcidid><orcidid>https://orcid.org/0000-0002-0955-3862</orcidid><orcidid>https://orcid.org/0000-0001-8578-1077</orcidid><orcidid>https://orcid.org/0000000209553862</orcidid><orcidid>https://orcid.org/0000000185781077</orcidid><orcidid>https://orcid.org/0000000325034904</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-02, Vol.152 (5), p.054101-054101
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_32035465
source AIP Journals Complete; Alma/SFX Local Collection
subjects Configuration interaction
Convergence
Optimization
Organic chemistry
Perturbation theory
Sampling
title Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20stochastic%20multireference%20perturbation%20theory%20for%20large%20active%20spaces%20within%20a%20full%20configuration%20interaction%20quantum%20Monte%20Carlo%20framework&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Anderson,%20Robert%20J.&rft.date=2020-02-07&rft.volume=152&rft.issue=5&rft.spage=054101&rft.epage=054101&rft.pages=054101-054101&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5140086&rft_dat=%3Cproquest_pubme%3E2353021654%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350166461&rft_id=info:pmid/32035465&rfr_iscdi=true