TBC1D9 regulates TBK1 activation through Ca 2+ signaling in selective autophagy

Invading microbial pathogens can be eliminated selectively by xenophagy. Ubiquitin-mediated autophagy receptors are phosphorylated by TANK-binding kinase 1 (TBK1) and recruited to ubiquitinated bacteria to facilitate autophagosome formation during xenophagy, but the molecular mechanism underlying TB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-02, Vol.11 (1), p.770
Hauptverfasser: Nozawa, Takashi, Sano, Shunsuke, Minowa-Nozawa, Atsuko, Toh, Hirotaka, Nakajima, Shintaro, Murase, Kazunori, Aikawa, Chihiro, Nakagawa, Ichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 770
container_title Nature communications
container_volume 11
creator Nozawa, Takashi
Sano, Shunsuke
Minowa-Nozawa, Atsuko
Toh, Hirotaka
Nakajima, Shintaro
Murase, Kazunori
Aikawa, Chihiro
Nakagawa, Ichiro
description Invading microbial pathogens can be eliminated selectively by xenophagy. Ubiquitin-mediated autophagy receptors are phosphorylated by TANK-binding kinase 1 (TBK1) and recruited to ubiquitinated bacteria to facilitate autophagosome formation during xenophagy, but the molecular mechanism underlying TBK1 activation in response to microbial infection is not clear. Here, we show that bacterial infection increases Ca levels to activate TBK1 for xenophagy via the Ca -binding protein TBC1 domain family member 9 (TBC1D9). Mechanistically, the ubiquitin-binding region (UBR) and Ca -binding motif of TBC1D9 mediate its binding with ubiquitin-positive bacteria, and TBC1D9 knockout suppresses TBK1 activation and subsequent recruitment of the ULK1 complex. Treatment with a Ca chelator impairs TBC1D9-ubiquitin interactions and TBK1 activation during xenophagy. TBC1D9 is also recruited to damaged mitochondria through its UBR and Ca -binding motif, and is required for TBK1 activation during mitophagy. These results indicate that TBC1D9 controls TBK1 activation during xenophagy and mitophagy through Ca -dependent ubiquitin-recognition.
doi_str_mv 10.1038/s41467-020-14533-4
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_32034138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32034138</sourcerecordid><originalsourceid>FETCH-pubmed_primary_320341383</originalsourceid><addsrcrecordid>eNqFjrFuwjAUAC0kBAj4AQb09srUz8-UsBJASAxdskcP6jquQhLFTiX-HpBg5pZbbjghZqgWqCj5DAbN10oqrSSaJZE0PTHSyqDElaahmIbwp-7QGhNjBmJIWpFBSkbiO9ukuF1Da11XcrQBss0Rgc_R_3P0dQWxaOvOFZAy6A8I3lVc-sqBryDY0j5CC9zFuinYXSei_8tlsNOnx2K-32XpQTbd6WJ_8qb1F26v-euA3gY3npBAZw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TBC1D9 regulates TBK1 activation through Ca 2+ signaling in selective autophagy</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Nozawa, Takashi ; Sano, Shunsuke ; Minowa-Nozawa, Atsuko ; Toh, Hirotaka ; Nakajima, Shintaro ; Murase, Kazunori ; Aikawa, Chihiro ; Nakagawa, Ichiro</creator><creatorcontrib>Nozawa, Takashi ; Sano, Shunsuke ; Minowa-Nozawa, Atsuko ; Toh, Hirotaka ; Nakajima, Shintaro ; Murase, Kazunori ; Aikawa, Chihiro ; Nakagawa, Ichiro</creatorcontrib><description>Invading microbial pathogens can be eliminated selectively by xenophagy. Ubiquitin-mediated autophagy receptors are phosphorylated by TANK-binding kinase 1 (TBK1) and recruited to ubiquitinated bacteria to facilitate autophagosome formation during xenophagy, but the molecular mechanism underlying TBK1 activation in response to microbial infection is not clear. Here, we show that bacterial infection increases Ca levels to activate TBK1 for xenophagy via the Ca -binding protein TBC1 domain family member 9 (TBC1D9). Mechanistically, the ubiquitin-binding region (UBR) and Ca -binding motif of TBC1D9 mediate its binding with ubiquitin-positive bacteria, and TBC1D9 knockout suppresses TBK1 activation and subsequent recruitment of the ULK1 complex. Treatment with a Ca chelator impairs TBC1D9-ubiquitin interactions and TBK1 activation during xenophagy. TBC1D9 is also recruited to damaged mitochondria through its UBR and Ca -binding motif, and is required for TBK1 activation during mitophagy. These results indicate that TBC1D9 controls TBK1 activation during xenophagy and mitophagy through Ca -dependent ubiquitin-recognition.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-14533-4</identifier><identifier>PMID: 32034138</identifier><language>eng</language><publisher>England</publisher><subject>Autophagy - physiology ; Binding Sites ; Calcium Signaling - physiology ; Calcium-Binding Proteins - genetics ; Calcium-Binding Proteins - physiology ; Cytosol - metabolism ; Gene Knockout Techniques ; HeLa Cells ; Host-Pathogen Interactions ; Humans ; Macroautophagy - physiology ; Membrane Proteins - genetics ; Membrane Proteins - physiology ; Mitochondria - metabolism ; Mitochondria - microbiology ; Phosphorylation ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Streptococcal Infections - metabolism ; Streptococcus pyogenes - pathogenicity ; Ubiquitin - metabolism</subject><ispartof>Nature communications, 2020-02, Vol.11 (1), p.770</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4858-3391 ; 0000-0001-6552-1702 ; 0000-0002-1822-5553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32034138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nozawa, Takashi</creatorcontrib><creatorcontrib>Sano, Shunsuke</creatorcontrib><creatorcontrib>Minowa-Nozawa, Atsuko</creatorcontrib><creatorcontrib>Toh, Hirotaka</creatorcontrib><creatorcontrib>Nakajima, Shintaro</creatorcontrib><creatorcontrib>Murase, Kazunori</creatorcontrib><creatorcontrib>Aikawa, Chihiro</creatorcontrib><creatorcontrib>Nakagawa, Ichiro</creatorcontrib><title>TBC1D9 regulates TBK1 activation through Ca 2+ signaling in selective autophagy</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Invading microbial pathogens can be eliminated selectively by xenophagy. Ubiquitin-mediated autophagy receptors are phosphorylated by TANK-binding kinase 1 (TBK1) and recruited to ubiquitinated bacteria to facilitate autophagosome formation during xenophagy, but the molecular mechanism underlying TBK1 activation in response to microbial infection is not clear. Here, we show that bacterial infection increases Ca levels to activate TBK1 for xenophagy via the Ca -binding protein TBC1 domain family member 9 (TBC1D9). Mechanistically, the ubiquitin-binding region (UBR) and Ca -binding motif of TBC1D9 mediate its binding with ubiquitin-positive bacteria, and TBC1D9 knockout suppresses TBK1 activation and subsequent recruitment of the ULK1 complex. Treatment with a Ca chelator impairs TBC1D9-ubiquitin interactions and TBK1 activation during xenophagy. TBC1D9 is also recruited to damaged mitochondria through its UBR and Ca -binding motif, and is required for TBK1 activation during mitophagy. These results indicate that TBC1D9 controls TBK1 activation during xenophagy and mitophagy through Ca -dependent ubiquitin-recognition.</description><subject>Autophagy - physiology</subject><subject>Binding Sites</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Calcium-Binding Proteins - physiology</subject><subject>Cytosol - metabolism</subject><subject>Gene Knockout Techniques</subject><subject>HeLa Cells</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Macroautophagy - physiology</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - physiology</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - microbiology</subject><subject>Phosphorylation</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Streptococcal Infections - metabolism</subject><subject>Streptococcus pyogenes - pathogenicity</subject><subject>Ubiquitin - metabolism</subject><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFjrFuwjAUAC0kBAj4AQb09srUz8-UsBJASAxdskcP6jquQhLFTiX-HpBg5pZbbjghZqgWqCj5DAbN10oqrSSaJZE0PTHSyqDElaahmIbwp-7QGhNjBmJIWpFBSkbiO9ukuF1Da11XcrQBss0Rgc_R_3P0dQWxaOvOFZAy6A8I3lVc-sqBryDY0j5CC9zFuinYXSei_8tlsNOnx2K-32XpQTbd6WJ_8qb1F26v-euA3gY3npBAZw</recordid><startdate>20200207</startdate><enddate>20200207</enddate><creator>Nozawa, Takashi</creator><creator>Sano, Shunsuke</creator><creator>Minowa-Nozawa, Atsuko</creator><creator>Toh, Hirotaka</creator><creator>Nakajima, Shintaro</creator><creator>Murase, Kazunori</creator><creator>Aikawa, Chihiro</creator><creator>Nakagawa, Ichiro</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><orcidid>https://orcid.org/0000-0003-4858-3391</orcidid><orcidid>https://orcid.org/0000-0001-6552-1702</orcidid><orcidid>https://orcid.org/0000-0002-1822-5553</orcidid></search><sort><creationdate>20200207</creationdate><title>TBC1D9 regulates TBK1 activation through Ca 2+ signaling in selective autophagy</title><author>Nozawa, Takashi ; Sano, Shunsuke ; Minowa-Nozawa, Atsuko ; Toh, Hirotaka ; Nakajima, Shintaro ; Murase, Kazunori ; Aikawa, Chihiro ; Nakagawa, Ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_320341383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autophagy - physiology</topic><topic>Binding Sites</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Calcium-Binding Proteins - physiology</topic><topic>Cytosol - metabolism</topic><topic>Gene Knockout Techniques</topic><topic>HeLa Cells</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Macroautophagy - physiology</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - physiology</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - microbiology</topic><topic>Phosphorylation</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Streptococcal Infections - metabolism</topic><topic>Streptococcus pyogenes - pathogenicity</topic><topic>Ubiquitin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nozawa, Takashi</creatorcontrib><creatorcontrib>Sano, Shunsuke</creatorcontrib><creatorcontrib>Minowa-Nozawa, Atsuko</creatorcontrib><creatorcontrib>Toh, Hirotaka</creatorcontrib><creatorcontrib>Nakajima, Shintaro</creatorcontrib><creatorcontrib>Murase, Kazunori</creatorcontrib><creatorcontrib>Aikawa, Chihiro</creatorcontrib><creatorcontrib>Nakagawa, Ichiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nozawa, Takashi</au><au>Sano, Shunsuke</au><au>Minowa-Nozawa, Atsuko</au><au>Toh, Hirotaka</au><au>Nakajima, Shintaro</au><au>Murase, Kazunori</au><au>Aikawa, Chihiro</au><au>Nakagawa, Ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TBC1D9 regulates TBK1 activation through Ca 2+ signaling in selective autophagy</atitle><jtitle>Nature communications</jtitle><addtitle>Nat Commun</addtitle><date>2020-02-07</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>770</spage><pages>770-</pages><eissn>2041-1723</eissn><abstract>Invading microbial pathogens can be eliminated selectively by xenophagy. Ubiquitin-mediated autophagy receptors are phosphorylated by TANK-binding kinase 1 (TBK1) and recruited to ubiquitinated bacteria to facilitate autophagosome formation during xenophagy, but the molecular mechanism underlying TBK1 activation in response to microbial infection is not clear. Here, we show that bacterial infection increases Ca levels to activate TBK1 for xenophagy via the Ca -binding protein TBC1 domain family member 9 (TBC1D9). Mechanistically, the ubiquitin-binding region (UBR) and Ca -binding motif of TBC1D9 mediate its binding with ubiquitin-positive bacteria, and TBC1D9 knockout suppresses TBK1 activation and subsequent recruitment of the ULK1 complex. Treatment with a Ca chelator impairs TBC1D9-ubiquitin interactions and TBK1 activation during xenophagy. TBC1D9 is also recruited to damaged mitochondria through its UBR and Ca -binding motif, and is required for TBK1 activation during mitophagy. These results indicate that TBC1D9 controls TBK1 activation during xenophagy and mitophagy through Ca -dependent ubiquitin-recognition.</abstract><cop>England</cop><pmid>32034138</pmid><doi>10.1038/s41467-020-14533-4</doi><orcidid>https://orcid.org/0000-0003-4858-3391</orcidid><orcidid>https://orcid.org/0000-0001-6552-1702</orcidid><orcidid>https://orcid.org/0000-0002-1822-5553</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2041-1723
ispartof Nature communications, 2020-02, Vol.11 (1), p.770
issn 2041-1723
language eng
recordid cdi_pubmed_primary_32034138
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects Autophagy - physiology
Binding Sites
Calcium Signaling - physiology
Calcium-Binding Proteins - genetics
Calcium-Binding Proteins - physiology
Cytosol - metabolism
Gene Knockout Techniques
HeLa Cells
Host-Pathogen Interactions
Humans
Macroautophagy - physiology
Membrane Proteins - genetics
Membrane Proteins - physiology
Mitochondria - metabolism
Mitochondria - microbiology
Phosphorylation
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Streptococcal Infections - metabolism
Streptococcus pyogenes - pathogenicity
Ubiquitin - metabolism
title TBC1D9 regulates TBK1 activation through Ca 2+ signaling in selective autophagy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TBC1D9%20regulates%20TBK1%20activation%20through%20Ca%202+%20signaling%20in%20selective%20autophagy&rft.jtitle=Nature%20communications&rft.au=Nozawa,%20Takashi&rft.date=2020-02-07&rft.volume=11&rft.issue=1&rft.spage=770&rft.pages=770-&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-14533-4&rft_dat=%3Cpubmed%3E32034138%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32034138&rfr_iscdi=true