Tensor Networks for Latent Variable Analysis: Novel Algorithms for Tensor Train Approximation
Decompositions of tensors into factor matrices, which interact through a core tensor, have found numerous applications in signal processing and machine learning. A more general tensor model that represents data as an ordered network of subtensors of order-2 or order-3 has, so far, not been widely co...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2020-11, Vol.31 (11), p.4622-4636 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4636 |
---|---|
container_issue | 11 |
container_start_page | 4622 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 31 |
creator | Phan, Anh-Huy Cichocki, Andrzej Uschmajew, Andre Tichavsky, Petr Luta, George Mandic, Danilo P. |
description | Decompositions of tensors into factor matrices, which interact through a core tensor, have found numerous applications in signal processing and machine learning. A more general tensor model that represents data as an ordered network of subtensors of order-2 or order-3 has, so far, not been widely considered in these fields, although this so-called tensor network (TN) decomposition has been long studied in quantum physics and scientific computing. In this article, we present novel algorithms and applications of TN decompositions, with a particular focus on the tensor train (TT) decomposition and its variants. The novel algorithms developed for the TT decomposition update, in an alternating way, one or several core tensors at each iteration and exhibit enhanced mathematical tractability and scalability for large-scale data tensors. For rigor, the cases of the given ranks, given approximation error, and the given error bound are all considered. The proposed algorithms provide well-balanced TT-decompositions and are tested in the classic paradigms of blind source separation from a single mixture, denoising, and feature extraction, achieving superior performance over the widely used truncated algorithms for TT decomposition. |
doi_str_mv | 10.1109/TNNLS.2019.2956926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_32031950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8984730</ieee_id><sourcerecordid>2352646872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-18ef9d24e53a8e11ddce69fda74fce6d471a44d6ce0251f12c0d62b2448ed2ef3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoKuofUJAFL15ak8nHJt6K-AWlHqziRZZ0M6ur201Ntn78e6OtPZhLJuSZd5iHkH1G-4xRczIejYa3faDM9MFIZUCtkW1gCnrAtV5f1fnDFtmL8YWmo6hUwmySLQ6UMyPpNnkcYxt9yEbYffjwGrMqPYa2w7bL7m2o7aTBbNDa5ivW8TQb-XdsskHz5EPdPU8X-DJiHGzdZoPZLPjPemq72re7ZKOyTcS95b1D7i7Ox2dXveHN5fXZYNgruWRdj2msjAOBkluNjDlXojKVs7moUuVEzqwQTpVIQbKKQUmdggkIodEBVnyHHC9y0-y3OcaumNaxxKaxLfp5LIBLUELpHBJ69A998fOQFkyUkDqXlCmRKFhQZfAxBqyKWUg7ha-C0eLHf_Hrv_jxXyz9p6bDZfR8MkW3avmznYCDBVAj4upbGy1yTvk3RSKKJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458750164</pqid></control><display><type>article</type><title>Tensor Networks for Latent Variable Analysis: Novel Algorithms for Tensor Train Approximation</title><source>IEEE Electronic Library (IEL)</source><creator>Phan, Anh-Huy ; Cichocki, Andrzej ; Uschmajew, Andre ; Tichavsky, Petr ; Luta, George ; Mandic, Danilo P.</creator><creatorcontrib>Phan, Anh-Huy ; Cichocki, Andrzej ; Uschmajew, Andre ; Tichavsky, Petr ; Luta, George ; Mandic, Danilo P.</creatorcontrib><description>Decompositions of tensors into factor matrices, which interact through a core tensor, have found numerous applications in signal processing and machine learning. A more general tensor model that represents data as an ordered network of subtensors of order-2 or order-3 has, so far, not been widely considered in these fields, although this so-called tensor network (TN) decomposition has been long studied in quantum physics and scientific computing. In this article, we present novel algorithms and applications of TN decompositions, with a particular focus on the tensor train (TT) decomposition and its variants. The novel algorithms developed for the TT decomposition update, in an alternating way, one or several core tensors at each iteration and exhibit enhanced mathematical tractability and scalability for large-scale data tensors. For rigor, the cases of the given ranks, given approximation error, and the given error bound are all considered. The proposed algorithms provide well-balanced TT-decompositions and are tested in the classic paradigms of blind source separation from a single mixture, denoising, and feature extraction, achieving superior performance over the widely used truncated algorithms for TT decomposition.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2019.2956926</identifier><identifier>PMID: 32031950</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Approximation ; Approximation algorithms ; Approximation error ; Blind source separation ; Data models ; Decomposition ; Feature extraction ; image denoising ; Iterative methods ; Learning algorithms ; Machine learning ; Mathematical analysis ; Matrix decomposition ; Matrix methods ; nested Tucker ; Noise reduction ; Quantum theory ; Signal processing ; Signal processing algorithms ; tensor network (TN) ; tensor train (TT) decomposition ; tensorization ; Tensors ; truncated singular value decomposition (SVD) ; Tucker-2 (TK2) decomposition</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-11, Vol.31 (11), p.4622-4636</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-18ef9d24e53a8e11ddce69fda74fce6d471a44d6ce0251f12c0d62b2448ed2ef3</citedby><cites>FETCH-LOGICAL-c351t-18ef9d24e53a8e11ddce69fda74fce6d471a44d6ce0251f12c0d62b2448ed2ef3</cites><orcidid>0000-0002-4035-7632 ; 0000-0002-5509-7773 ; 0000-0003-0621-4766 ; 0000-0001-8432-3963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8984730$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8984730$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32031950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phan, Anh-Huy</creatorcontrib><creatorcontrib>Cichocki, Andrzej</creatorcontrib><creatorcontrib>Uschmajew, Andre</creatorcontrib><creatorcontrib>Tichavsky, Petr</creatorcontrib><creatorcontrib>Luta, George</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><title>Tensor Networks for Latent Variable Analysis: Novel Algorithms for Tensor Train Approximation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Decompositions of tensors into factor matrices, which interact through a core tensor, have found numerous applications in signal processing and machine learning. A more general tensor model that represents data as an ordered network of subtensors of order-2 or order-3 has, so far, not been widely considered in these fields, although this so-called tensor network (TN) decomposition has been long studied in quantum physics and scientific computing. In this article, we present novel algorithms and applications of TN decompositions, with a particular focus on the tensor train (TT) decomposition and its variants. The novel algorithms developed for the TT decomposition update, in an alternating way, one or several core tensors at each iteration and exhibit enhanced mathematical tractability and scalability for large-scale data tensors. For rigor, the cases of the given ranks, given approximation error, and the given error bound are all considered. The proposed algorithms provide well-balanced TT-decompositions and are tested in the classic paradigms of blind source separation from a single mixture, denoising, and feature extraction, achieving superior performance over the widely used truncated algorithms for TT decomposition.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Approximation error</subject><subject>Blind source separation</subject><subject>Data models</subject><subject>Decomposition</subject><subject>Feature extraction</subject><subject>image denoising</subject><subject>Iterative methods</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Matrix methods</subject><subject>nested Tucker</subject><subject>Noise reduction</subject><subject>Quantum theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>tensor network (TN)</subject><subject>tensor train (TT) decomposition</subject><subject>tensorization</subject><subject>Tensors</subject><subject>truncated singular value decomposition (SVD)</subject><subject>Tucker-2 (TK2) decomposition</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoKuofUJAFL15ak8nHJt6K-AWlHqziRZZ0M6ur201Ntn78e6OtPZhLJuSZd5iHkH1G-4xRczIejYa3faDM9MFIZUCtkW1gCnrAtV5f1fnDFtmL8YWmo6hUwmySLQ6UMyPpNnkcYxt9yEbYffjwGrMqPYa2w7bL7m2o7aTBbNDa5ivW8TQb-XdsskHz5EPdPU8X-DJiHGzdZoPZLPjPemq72re7ZKOyTcS95b1D7i7Ox2dXveHN5fXZYNgruWRdj2msjAOBkluNjDlXojKVs7moUuVEzqwQTpVIQbKKQUmdggkIodEBVnyHHC9y0-y3OcaumNaxxKaxLfp5LIBLUELpHBJ69A998fOQFkyUkDqXlCmRKFhQZfAxBqyKWUg7ha-C0eLHf_Hrv_jxXyz9p6bDZfR8MkW3avmznYCDBVAj4upbGy1yTvk3RSKKJA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Phan, Anh-Huy</creator><creator>Cichocki, Andrzej</creator><creator>Uschmajew, Andre</creator><creator>Tichavsky, Petr</creator><creator>Luta, George</creator><creator>Mandic, Danilo P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4035-7632</orcidid><orcidid>https://orcid.org/0000-0002-5509-7773</orcidid><orcidid>https://orcid.org/0000-0003-0621-4766</orcidid><orcidid>https://orcid.org/0000-0001-8432-3963</orcidid></search><sort><creationdate>20201101</creationdate><title>Tensor Networks for Latent Variable Analysis: Novel Algorithms for Tensor Train Approximation</title><author>Phan, Anh-Huy ; Cichocki, Andrzej ; Uschmajew, Andre ; Tichavsky, Petr ; Luta, George ; Mandic, Danilo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-18ef9d24e53a8e11ddce69fda74fce6d471a44d6ce0251f12c0d62b2448ed2ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Approximation error</topic><topic>Blind source separation</topic><topic>Data models</topic><topic>Decomposition</topic><topic>Feature extraction</topic><topic>image denoising</topic><topic>Iterative methods</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Matrix methods</topic><topic>nested Tucker</topic><topic>Noise reduction</topic><topic>Quantum theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>tensor network (TN)</topic><topic>tensor train (TT) decomposition</topic><topic>tensorization</topic><topic>Tensors</topic><topic>truncated singular value decomposition (SVD)</topic><topic>Tucker-2 (TK2) decomposition</topic><toplevel>online_resources</toplevel><creatorcontrib>Phan, Anh-Huy</creatorcontrib><creatorcontrib>Cichocki, Andrzej</creatorcontrib><creatorcontrib>Uschmajew, Andre</creatorcontrib><creatorcontrib>Tichavsky, Petr</creatorcontrib><creatorcontrib>Luta, George</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phan, Anh-Huy</au><au>Cichocki, Andrzej</au><au>Uschmajew, Andre</au><au>Tichavsky, Petr</au><au>Luta, George</au><au>Mandic, Danilo P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor Networks for Latent Variable Analysis: Novel Algorithms for Tensor Train Approximation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>31</volume><issue>11</issue><spage>4622</spage><epage>4636</epage><pages>4622-4636</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Decompositions of tensors into factor matrices, which interact through a core tensor, have found numerous applications in signal processing and machine learning. A more general tensor model that represents data as an ordered network of subtensors of order-2 or order-3 has, so far, not been widely considered in these fields, although this so-called tensor network (TN) decomposition has been long studied in quantum physics and scientific computing. In this article, we present novel algorithms and applications of TN decompositions, with a particular focus on the tensor train (TT) decomposition and its variants. The novel algorithms developed for the TT decomposition update, in an alternating way, one or several core tensors at each iteration and exhibit enhanced mathematical tractability and scalability for large-scale data tensors. For rigor, the cases of the given ranks, given approximation error, and the given error bound are all considered. The proposed algorithms provide well-balanced TT-decompositions and are tested in the classic paradigms of blind source separation from a single mixture, denoising, and feature extraction, achieving superior performance over the widely used truncated algorithms for TT decomposition.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32031950</pmid><doi>10.1109/TNNLS.2019.2956926</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4035-7632</orcidid><orcidid>https://orcid.org/0000-0002-5509-7773</orcidid><orcidid>https://orcid.org/0000-0003-0621-4766</orcidid><orcidid>https://orcid.org/0000-0001-8432-3963</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2020-11, Vol.31 (11), p.4622-4636 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_32031950 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation Approximation algorithms Approximation error Blind source separation Data models Decomposition Feature extraction image denoising Iterative methods Learning algorithms Machine learning Mathematical analysis Matrix decomposition Matrix methods nested Tucker Noise reduction Quantum theory Signal processing Signal processing algorithms tensor network (TN) tensor train (TT) decomposition tensorization Tensors truncated singular value decomposition (SVD) Tucker-2 (TK2) decomposition |
title | Tensor Networks for Latent Variable Analysis: Novel Algorithms for Tensor Train Approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20Networks%20for%20Latent%20Variable%20Analysis:%20Novel%20Algorithms%20for%20Tensor%20Train%20Approximation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Phan,%20Anh-Huy&rft.date=2020-11-01&rft.volume=31&rft.issue=11&rft.spage=4622&rft.epage=4636&rft.pages=4622-4636&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2019.2956926&rft_dat=%3Cproquest_RIE%3E2352646872%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458750164&rft_id=info:pmid/32031950&rft_ieee_id=8984730&rfr_iscdi=true |