Relative-path-based algorithm for link prediction on complex networks using a basic similarity factor

Complex networks have found many applications in various fields. An important problem in theories of complex networks is to find factors that aid link prediction, which is needed for network reconstruction and to study network evolution mechanisms. Though current similarity-based algorithms study fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2020-01, Vol.30 (1), p.013104-013104
Hauptverfasser: Li, Shibao, Huang, Junwei, Liu, Jianhang, Huang, Tingpei, Chen, Haihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 013104
container_issue 1
container_start_page 013104
container_title Chaos (Woodbury, N.Y.)
container_volume 30
creator Li, Shibao
Huang, Junwei
Liu, Jianhang
Huang, Tingpei
Chen, Haihua
description Complex networks have found many applications in various fields. An important problem in theories of complex networks is to find factors that aid link prediction, which is needed for network reconstruction and to study network evolution mechanisms. Though current similarity-based algorithms study factors of common neighbors and local paths connecting a target node pair, they ignore factor information on paths between a node and its neighbors. Therefore, this paper first supposes that paths between nodes and neighbors provide basic similarity features. Accordingly, we propose a so-called relative-path-based method. This method utilizes factor information on paths between nodes and neighbors, besides paths between node pairs, in similarity calculation for link prediction. Furthermore, we solve the problem of determining the parameters in our algorithm as well as in other algorithms after a series of discoveries and validations. Experimental results on six disparate real networks demonstrate that the relative-path-based method can obtain greater prediction accuracy than other methods, as well as performance robustness.
doi_str_mv 10.1063/1.5094448
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32013467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332209334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-b611801ed8c7976fbe4a41731c3cb6cd5a7b14c4c2c61e4d224d7bc005b6227d3</originalsourceid><addsrcrecordid>eNp90F1LHDEUBuAglq61vfAPSMAbFUbPSTJflyK1FhYKpV4PmSSzxp2ZjElG679vlt0qtCAEkosnb05eQo4QLhAKfokXOdRCiGqPHCBUdVYWFdvfnHORYQ6wIJ9CeAAAZDz_SBacAXJRlAfE_DS9jPbJZJOM91krg9FU9ivnbbwfaOc87e24ppM32qpo3UjTUm6YevObjiY-O78OdA52XFFJ032raLCD7WVKeKGdVNH5z-RDJ_tgvuz2Q3J38_XX9W22_PHt-_XVMlO84jFrC8QK0OhKlXVZdK0RUmDJUXHVFkrnsmxRKKGYKtAIzZjQZasA8rZgrNT8kJxucyfvHmcTYjPYoEzfy9G4OTTp91BDXmOe6Mk_9MHNfkzTJcUZg5pzkdTZVinvQvCmayZvB-lfGoRm032Dza77ZI93iXM7GP0q_5adwPkWBGWj3HT5ap6cf0tqJt29h_9_-g_q5pqX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332209334</pqid></control><display><type>article</type><title>Relative-path-based algorithm for link prediction on complex networks using a basic similarity factor</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Shibao ; Huang, Junwei ; Liu, Jianhang ; Huang, Tingpei ; Chen, Haihua</creator><creatorcontrib>Li, Shibao ; Huang, Junwei ; Liu, Jianhang ; Huang, Tingpei ; Chen, Haihua</creatorcontrib><description>Complex networks have found many applications in various fields. An important problem in theories of complex networks is to find factors that aid link prediction, which is needed for network reconstruction and to study network evolution mechanisms. Though current similarity-based algorithms study factors of common neighbors and local paths connecting a target node pair, they ignore factor information on paths between a node and its neighbors. Therefore, this paper first supposes that paths between nodes and neighbors provide basic similarity features. Accordingly, we propose a so-called relative-path-based method. This method utilizes factor information on paths between nodes and neighbors, besides paths between node pairs, in similarity calculation for link prediction. Furthermore, we solve the problem of determining the parameters in our algorithm as well as in other algorithms after a series of discoveries and validations. Experimental results on six disparate real networks demonstrate that the relative-path-based method can obtain greater prediction accuracy than other methods, as well as performance robustness.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5094448</identifier><identifier>PMID: 32013467</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Evolutionary algorithms ; Mathematical analysis ; Networks ; Nodes ; Similarity</subject><ispartof>Chaos (Woodbury, N.Y.), 2020-01, Vol.30 (1), p.013104-013104</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-b611801ed8c7976fbe4a41731c3cb6cd5a7b14c4c2c61e4d224d7bc005b6227d3</citedby><cites>FETCH-LOGICAL-c383t-b611801ed8c7976fbe4a41731c3cb6cd5a7b14c4c2c61e4d224d7bc005b6227d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32013467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shibao</creatorcontrib><creatorcontrib>Huang, Junwei</creatorcontrib><creatorcontrib>Liu, Jianhang</creatorcontrib><creatorcontrib>Huang, Tingpei</creatorcontrib><creatorcontrib>Chen, Haihua</creatorcontrib><title>Relative-path-based algorithm for link prediction on complex networks using a basic similarity factor</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Complex networks have found many applications in various fields. An important problem in theories of complex networks is to find factors that aid link prediction, which is needed for network reconstruction and to study network evolution mechanisms. Though current similarity-based algorithms study factors of common neighbors and local paths connecting a target node pair, they ignore factor information on paths between a node and its neighbors. Therefore, this paper first supposes that paths between nodes and neighbors provide basic similarity features. Accordingly, we propose a so-called relative-path-based method. This method utilizes factor information on paths between nodes and neighbors, besides paths between node pairs, in similarity calculation for link prediction. Furthermore, we solve the problem of determining the parameters in our algorithm as well as in other algorithms after a series of discoveries and validations. Experimental results on six disparate real networks demonstrate that the relative-path-based method can obtain greater prediction accuracy than other methods, as well as performance robustness.</description><subject>Algorithms</subject><subject>Evolutionary algorithms</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>Nodes</subject><subject>Similarity</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90F1LHDEUBuAglq61vfAPSMAbFUbPSTJflyK1FhYKpV4PmSSzxp2ZjElG679vlt0qtCAEkosnb05eQo4QLhAKfokXOdRCiGqPHCBUdVYWFdvfnHORYQ6wIJ9CeAAAZDz_SBacAXJRlAfE_DS9jPbJZJOM91krg9FU9ivnbbwfaOc87e24ppM32qpo3UjTUm6YevObjiY-O78OdA52XFFJ032raLCD7WVKeKGdVNH5z-RDJ_tgvuz2Q3J38_XX9W22_PHt-_XVMlO84jFrC8QK0OhKlXVZdK0RUmDJUXHVFkrnsmxRKKGYKtAIzZjQZasA8rZgrNT8kJxucyfvHmcTYjPYoEzfy9G4OTTp91BDXmOe6Mk_9MHNfkzTJcUZg5pzkdTZVinvQvCmayZvB-lfGoRm032Dza77ZI93iXM7GP0q_5adwPkWBGWj3HT5ap6cf0tqJt29h_9_-g_q5pqX</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Li, Shibao</creator><creator>Huang, Junwei</creator><creator>Liu, Jianhang</creator><creator>Huang, Tingpei</creator><creator>Chen, Haihua</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>202001</creationdate><title>Relative-path-based algorithm for link prediction on complex networks using a basic similarity factor</title><author>Li, Shibao ; Huang, Junwei ; Liu, Jianhang ; Huang, Tingpei ; Chen, Haihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-b611801ed8c7976fbe4a41731c3cb6cd5a7b14c4c2c61e4d224d7bc005b6227d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Evolutionary algorithms</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>Nodes</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shibao</creatorcontrib><creatorcontrib>Huang, Junwei</creatorcontrib><creatorcontrib>Liu, Jianhang</creatorcontrib><creatorcontrib>Huang, Tingpei</creatorcontrib><creatorcontrib>Chen, Haihua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shibao</au><au>Huang, Junwei</au><au>Liu, Jianhang</au><au>Huang, Tingpei</au><au>Chen, Haihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative-path-based algorithm for link prediction on complex networks using a basic similarity factor</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2020-01</date><risdate>2020</risdate><volume>30</volume><issue>1</issue><spage>013104</spage><epage>013104</epage><pages>013104-013104</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Complex networks have found many applications in various fields. An important problem in theories of complex networks is to find factors that aid link prediction, which is needed for network reconstruction and to study network evolution mechanisms. Though current similarity-based algorithms study factors of common neighbors and local paths connecting a target node pair, they ignore factor information on paths between a node and its neighbors. Therefore, this paper first supposes that paths between nodes and neighbors provide basic similarity features. Accordingly, we propose a so-called relative-path-based method. This method utilizes factor information on paths between nodes and neighbors, besides paths between node pairs, in similarity calculation for link prediction. Furthermore, we solve the problem of determining the parameters in our algorithm as well as in other algorithms after a series of discoveries and validations. Experimental results on six disparate real networks demonstrate that the relative-path-based method can obtain greater prediction accuracy than other methods, as well as performance robustness.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32013467</pmid><doi>10.1063/1.5094448</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2020-01, Vol.30 (1), p.013104-013104
issn 1054-1500
1089-7682
language eng
recordid cdi_pubmed_primary_32013467
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Evolutionary algorithms
Mathematical analysis
Networks
Nodes
Similarity
title Relative-path-based algorithm for link prediction on complex networks using a basic similarity factor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A58%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative-path-based%20algorithm%20for%20link%20prediction%20on%20complex%20networks%20using%20a%20basic%20similarity%20factor&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Li,%20Shibao&rft.date=2020-01&rft.volume=30&rft.issue=1&rft.spage=013104&rft.epage=013104&rft.pages=013104-013104&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5094448&rft_dat=%3Cproquest_pubme%3E2332209334%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332209334&rft_id=info:pmid/32013467&rfr_iscdi=true