Positron emission particle tracking using machine learning

We introduce a new approach to positron emission particle tracking based on machine learning algorithms, demonstrating novel methods for particle location, tracking, and trajectory separation. The method allows radioactively labeled particles to be located, in three-dimensional space, with high temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2020-01, Vol.91 (1), p.013329-013329
Hauptverfasser: Nicuşan, A. L., Windows-Yule, C. R. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 013329
container_issue 1
container_start_page 013329
container_title Review of scientific instruments
container_volume 91
creator Nicuşan, A. L.
Windows-Yule, C. R. K.
description We introduce a new approach to positron emission particle tracking based on machine learning algorithms, demonstrating novel methods for particle location, tracking, and trajectory separation. The method allows radioactively labeled particles to be located, in three-dimensional space, with high temporal and spatial resolution, requiring no prior knowledge of the number of tracers within the system and can successfully distinguish multiple particles separated by distances as small as 2 mm. The technique’s spatial resolution is observed to be invariant with the number of tracers used, allowing large numbers of particles to be tracked simultaneously, with no loss of data quality.
doi_str_mv 10.1063/1.5129251
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32012568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344433661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-e45af5154c01d4873307f63050346cfaa19d868c8395254cf4844c4da3f362b3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgiq3VhS8gA25UmJozuUzGnRRvUNBF9yHNJJo6N5MZwbc3pVVBwSySEL6cc_gROgY8BczJJUwZZEXGYAeNAYsizXlGdtEYY0JTnlMxQgchrHBcDGAfjUiGIWNcjNHVUxtc79smMbULwcVLp3zvdGWS3iv96prnZAjrvVb6xTUmqYzyTXw4RHtWVcEcbc8JWtzeLGb36fzx7mF2PU81FbRPDWXKMmBUYyipyAnBueUEszgc11YpKErBhRakYFlUNv6impaKWMKzJZmgs03Zzrdvgwm9jINqU1WqMe0QZEYYLgCAQqSnv-iqHXwTh4uKUkoI52t1vlHatyF4Y2XnXa38hwQs13lKkNs8oz3ZVhyWtSm_5VeAEVxsQNCuV33M79u8t_6nkuxK-x_-2_oTOvmJOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344433661</pqid></control><display><type>article</type><title>Positron emission particle tracking using machine learning</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nicuşan, A. L. ; Windows-Yule, C. R. K.</creator><creatorcontrib>Nicuşan, A. L. ; Windows-Yule, C. R. K.</creatorcontrib><description>We introduce a new approach to positron emission particle tracking based on machine learning algorithms, demonstrating novel methods for particle location, tracking, and trajectory separation. The method allows radioactively labeled particles to be located, in three-dimensional space, with high temporal and spatial resolution, requiring no prior knowledge of the number of tracers within the system and can successfully distinguish multiple particles separated by distances as small as 2 mm. The technique’s spatial resolution is observed to be invariant with the number of tracers used, allowing large numbers of particles to be tracked simultaneously, with no loss of data quality.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5129251</identifier><identifier>PMID: 32012568</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Machine learning ; Particle tracking ; Positron emission ; Scientific apparatus &amp; instruments ; Spatial resolution ; Tracers</subject><ispartof>Review of scientific instruments, 2020-01, Vol.91 (1), p.013329-013329</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-e45af5154c01d4873307f63050346cfaa19d868c8395254cf4844c4da3f362b3</citedby><cites>FETCH-LOGICAL-c484t-e45af5154c01d4873307f63050346cfaa19d868c8395254cf4844c4da3f362b3</cites><orcidid>0000-0003-1305-537X ; 0000-0002-4796-8719 ; 0000000247968719 ; 000000031305537X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5129251$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32012568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicuşan, A. L.</creatorcontrib><creatorcontrib>Windows-Yule, C. R. K.</creatorcontrib><title>Positron emission particle tracking using machine learning</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We introduce a new approach to positron emission particle tracking based on machine learning algorithms, demonstrating novel methods for particle location, tracking, and trajectory separation. The method allows radioactively labeled particles to be located, in three-dimensional space, with high temporal and spatial resolution, requiring no prior knowledge of the number of tracers within the system and can successfully distinguish multiple particles separated by distances as small as 2 mm. The technique’s spatial resolution is observed to be invariant with the number of tracers used, allowing large numbers of particles to be tracked simultaneously, with no loss of data quality.</description><subject>Algorithms</subject><subject>Machine learning</subject><subject>Particle tracking</subject><subject>Positron emission</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Spatial resolution</subject><subject>Tracers</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgiq3VhS8gA25UmJozuUzGnRRvUNBF9yHNJJo6N5MZwbc3pVVBwSySEL6cc_gROgY8BczJJUwZZEXGYAeNAYsizXlGdtEYY0JTnlMxQgchrHBcDGAfjUiGIWNcjNHVUxtc79smMbULwcVLp3zvdGWS3iv96prnZAjrvVb6xTUmqYzyTXw4RHtWVcEcbc8JWtzeLGb36fzx7mF2PU81FbRPDWXKMmBUYyipyAnBueUEszgc11YpKErBhRakYFlUNv6impaKWMKzJZmgs03Zzrdvgwm9jINqU1WqMe0QZEYYLgCAQqSnv-iqHXwTh4uKUkoI52t1vlHatyF4Y2XnXa38hwQs13lKkNs8oz3ZVhyWtSm_5VeAEVxsQNCuV33M79u8t_6nkuxK-x_-2_oTOvmJOw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Nicuşan, A. L.</creator><creator>Windows-Yule, C. R. K.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1305-537X</orcidid><orcidid>https://orcid.org/0000-0002-4796-8719</orcidid><orcidid>https://orcid.org/0000000247968719</orcidid><orcidid>https://orcid.org/000000031305537X</orcidid></search><sort><creationdate>20200101</creationdate><title>Positron emission particle tracking using machine learning</title><author>Nicuşan, A. L. ; Windows-Yule, C. R. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-e45af5154c01d4873307f63050346cfaa19d868c8395254cf4844c4da3f362b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Machine learning</topic><topic>Particle tracking</topic><topic>Positron emission</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Spatial resolution</topic><topic>Tracers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicuşan, A. L.</creatorcontrib><creatorcontrib>Windows-Yule, C. R. K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicuşan, A. L.</au><au>Windows-Yule, C. R. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positron emission particle tracking using machine learning</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>91</volume><issue>1</issue><spage>013329</spage><epage>013329</epage><pages>013329-013329</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We introduce a new approach to positron emission particle tracking based on machine learning algorithms, demonstrating novel methods for particle location, tracking, and trajectory separation. The method allows radioactively labeled particles to be located, in three-dimensional space, with high temporal and spatial resolution, requiring no prior knowledge of the number of tracers within the system and can successfully distinguish multiple particles separated by distances as small as 2 mm. The technique’s spatial resolution is observed to be invariant with the number of tracers used, allowing large numbers of particles to be tracked simultaneously, with no loss of data quality.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32012568</pmid><doi>10.1063/1.5129251</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1305-537X</orcidid><orcidid>https://orcid.org/0000-0002-4796-8719</orcidid><orcidid>https://orcid.org/0000000247968719</orcidid><orcidid>https://orcid.org/000000031305537X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2020-01, Vol.91 (1), p.013329-013329
issn 0034-6748
1089-7623
language eng
recordid cdi_pubmed_primary_32012568
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Machine learning
Particle tracking
Positron emission
Scientific apparatus & instruments
Spatial resolution
Tracers
title Positron emission particle tracking using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positron%20emission%20particle%20tracking%20using%20machine%20learning&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Nicu%C5%9Fan,%20A.%20L.&rft.date=2020-01-01&rft.volume=91&rft.issue=1&rft.spage=013329&rft.epage=013329&rft.pages=013329-013329&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5129251&rft_dat=%3Cproquest_pubme%3E2344433661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344433661&rft_id=info:pmid/32012568&rfr_iscdi=true