Nitric oxide as a developmental and metabolic signal in filamentous fungi

The short‐lived hydrophobic gas nitric oxide (NO) is a broadly conserved signaling molecule in all domains of life, including the ubiquitous and versatile filamentous fungi (molds). Several studies have suggested that NO plays a vast and diverse signaling role in molds. In this review, we summarize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2020-05, Vol.113 (5), p.872-882
Hauptverfasser: Zhao, Yanxia, Lim, Jieyin, Xu, Jianyang, Yu, Jae‐Hyuk, Zheng, Weifa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 882
container_issue 5
container_start_page 872
container_title Molecular microbiology
container_volume 113
creator Zhao, Yanxia
Lim, Jieyin
Xu, Jianyang
Yu, Jae‐Hyuk
Zheng, Weifa
description The short‐lived hydrophobic gas nitric oxide (NO) is a broadly conserved signaling molecule in all domains of life, including the ubiquitous and versatile filamentous fungi (molds). Several studies have suggested that NO plays a vast and diverse signaling role in molds. In this review, we summarize NO‐mediated signaling and the biosynthesis and degradation of NO in molds, and highlight the recent advances in understanding the NO‐mediated regulation of morphological and physiological processes throughout the fungal life cycle. In particular, we describe the role of NO in molds as a signaling molecule that modulates asexual and sexual development, the formation of infection body appressorium, and the production of secondary metabolites (SMs). In addition, we also summarize NO detoxification and protective mechanisms against nitrooxidative stress. NO signaling is initiated by binding of NO with soluble guanylyl cyclase (sGC). Upon the binding of NO, sGC catalyzes the conversion of GTP to cGMP followed by signal transduction. NO signaling affects diverse aspects of fungal development including conidiation, germination, formation of appressorium and sexual fruiting body. NO signaling is also involved, either as inducer or substrate, in fungal secondary metabolism.
doi_str_mv 10.1111/mmi.14465
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31968137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403835856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-1f6a1e9e37db1f4d43ad17712bc8296b0c009a7bbb39b15afe58dc2899f95cef3</originalsourceid><addsrcrecordid>eNqN0VtL5DAUB_CwrDjj6MN-gaWwL4pUc2na5FGKlwEvLy7sW0nSE8nQJrNNu6vf3uiMPgiCeUkIvxNO_gehHwSfkLRO-96dkKIo-Tc0J6zkOZVcfEdzLDnOmaB_ZmgvxhXGhOGS7aIZI7IUhFVztLx14-BMFh5dC5mKmcpa-AddWPfgR9VlyrdZD6PSoUssugefLp3PrOvUCwlTzOzkH9w-2rGqi3Cw3Rfo98X5fX2VX99dLuuz69wwIXhObKkISGBVq4kt2oKpllQVodoIKkuNDcZSVVprJjXhygIXraFCSiu5AcsW6HDz7noIfyeIY9O7aKDrlIfUTENZUVAqKKGJ_vpAV2Ea0geSKjATjAteJnW0UWYIMQ5gm_XgejU8NQQ3L_k2Kd_mNd9kf25fnHQP7bt8CzSB4w34DzrYaBx4A-8MY8xJmlBVpFOaxgKJr-vajWp0wddh8mMqPd2Wug6ePm-5ublZbnp_BiUjpHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403835856</pqid></control><display><type>article</type><title>Nitric oxide as a developmental and metabolic signal in filamentous fungi</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhao, Yanxia ; Lim, Jieyin ; Xu, Jianyang ; Yu, Jae‐Hyuk ; Zheng, Weifa</creator><creatorcontrib>Zhao, Yanxia ; Lim, Jieyin ; Xu, Jianyang ; Yu, Jae‐Hyuk ; Zheng, Weifa</creatorcontrib><description>The short‐lived hydrophobic gas nitric oxide (NO) is a broadly conserved signaling molecule in all domains of life, including the ubiquitous and versatile filamentous fungi (molds). Several studies have suggested that NO plays a vast and diverse signaling role in molds. In this review, we summarize NO‐mediated signaling and the biosynthesis and degradation of NO in molds, and highlight the recent advances in understanding the NO‐mediated regulation of morphological and physiological processes throughout the fungal life cycle. In particular, we describe the role of NO in molds as a signaling molecule that modulates asexual and sexual development, the formation of infection body appressorium, and the production of secondary metabolites (SMs). In addition, we also summarize NO detoxification and protective mechanisms against nitrooxidative stress. NO signaling is initiated by binding of NO with soluble guanylyl cyclase (sGC). Upon the binding of NO, sGC catalyzes the conversion of GTP to cGMP followed by signal transduction. NO signaling affects diverse aspects of fungal development including conidiation, germination, formation of appressorium and sexual fruiting body. NO signaling is also involved, either as inducer or substrate, in fungal secondary metabolism.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.14465</identifier><identifier>PMID: 31968137</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Biochemistry &amp; Molecular Biology ; Biodegradation ; Biosynthesis ; Detoxification ; development ; filamentous fungi ; Fungal Proteins - metabolism ; Fungi ; Fungi - metabolism ; Gene Expression Regulation, Fungal ; Host-Pathogen Interactions ; Hydrophobicity ; Life cycles ; Life Sciences &amp; Biomedicine ; Metabolic Networks and Pathways ; Metabolites ; Microbiology ; Mold ; Nitric oxide ; Nitric Oxide - metabolism ; nitrooxidative stress ; Science &amp; Technology ; secondary metabolism ; Secondary metabolites ; Signal Transduction ; Signaling</subject><ispartof>Molecular microbiology, 2020-05, Vol.113 (5), p.872-882</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>40</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000511367400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3885-1f6a1e9e37db1f4d43ad17712bc8296b0c009a7bbb39b15afe58dc2899f95cef3</citedby><cites>FETCH-LOGICAL-c3885-1f6a1e9e37db1f4d43ad17712bc8296b0c009a7bbb39b15afe58dc2899f95cef3</cites><orcidid>0000-0002-6401-9195 ; 0000-0003-0342-2578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.14465$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.14465$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,27933,27934,28257,45583,45584,46418,46842</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31968137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yanxia</creatorcontrib><creatorcontrib>Lim, Jieyin</creatorcontrib><creatorcontrib>Xu, Jianyang</creatorcontrib><creatorcontrib>Yu, Jae‐Hyuk</creatorcontrib><creatorcontrib>Zheng, Weifa</creatorcontrib><title>Nitric oxide as a developmental and metabolic signal in filamentous fungi</title><title>Molecular microbiology</title><addtitle>MOL MICROBIOL</addtitle><addtitle>Mol Microbiol</addtitle><description>The short‐lived hydrophobic gas nitric oxide (NO) is a broadly conserved signaling molecule in all domains of life, including the ubiquitous and versatile filamentous fungi (molds). Several studies have suggested that NO plays a vast and diverse signaling role in molds. In this review, we summarize NO‐mediated signaling and the biosynthesis and degradation of NO in molds, and highlight the recent advances in understanding the NO‐mediated regulation of morphological and physiological processes throughout the fungal life cycle. In particular, we describe the role of NO in molds as a signaling molecule that modulates asexual and sexual development, the formation of infection body appressorium, and the production of secondary metabolites (SMs). In addition, we also summarize NO detoxification and protective mechanisms against nitrooxidative stress. NO signaling is initiated by binding of NO with soluble guanylyl cyclase (sGC). Upon the binding of NO, sGC catalyzes the conversion of GTP to cGMP followed by signal transduction. NO signaling affects diverse aspects of fungal development including conidiation, germination, formation of appressorium and sexual fruiting body. NO signaling is also involved, either as inducer or substrate, in fungal secondary metabolism.</description><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biodegradation</subject><subject>Biosynthesis</subject><subject>Detoxification</subject><subject>development</subject><subject>filamentous fungi</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Fungi - metabolism</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Host-Pathogen Interactions</subject><subject>Hydrophobicity</subject><subject>Life cycles</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Mold</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>nitrooxidative stress</subject><subject>Science &amp; Technology</subject><subject>secondary metabolism</subject><subject>Secondary metabolites</subject><subject>Signal Transduction</subject><subject>Signaling</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqN0VtL5DAUB_CwrDjj6MN-gaWwL4pUc2na5FGKlwEvLy7sW0nSE8nQJrNNu6vf3uiMPgiCeUkIvxNO_gehHwSfkLRO-96dkKIo-Tc0J6zkOZVcfEdzLDnOmaB_ZmgvxhXGhOGS7aIZI7IUhFVztLx14-BMFh5dC5mKmcpa-AddWPfgR9VlyrdZD6PSoUssugefLp3PrOvUCwlTzOzkH9w-2rGqi3Cw3Rfo98X5fX2VX99dLuuz69wwIXhObKkISGBVq4kt2oKpllQVodoIKkuNDcZSVVprJjXhygIXraFCSiu5AcsW6HDz7noIfyeIY9O7aKDrlIfUTENZUVAqKKGJ_vpAV2Ea0geSKjATjAteJnW0UWYIMQ5gm_XgejU8NQQ3L_k2Kd_mNd9kf25fnHQP7bt8CzSB4w34DzrYaBx4A-8MY8xJmlBVpFOaxgKJr-vajWp0wddh8mMqPd2Wug6ePm-5ublZbnp_BiUjpHk</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Zhao, Yanxia</creator><creator>Lim, Jieyin</creator><creator>Xu, Jianyang</creator><creator>Yu, Jae‐Hyuk</creator><creator>Zheng, Weifa</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6401-9195</orcidid><orcidid>https://orcid.org/0000-0003-0342-2578</orcidid></search><sort><creationdate>202005</creationdate><title>Nitric oxide as a developmental and metabolic signal in filamentous fungi</title><author>Zhao, Yanxia ; Lim, Jieyin ; Xu, Jianyang ; Yu, Jae‐Hyuk ; Zheng, Weifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-1f6a1e9e37db1f4d43ad17712bc8296b0c009a7bbb39b15afe58dc2899f95cef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biodegradation</topic><topic>Biosynthesis</topic><topic>Detoxification</topic><topic>development</topic><topic>filamentous fungi</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Fungi - metabolism</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Host-Pathogen Interactions</topic><topic>Hydrophobicity</topic><topic>Life cycles</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Mold</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>nitrooxidative stress</topic><topic>Science &amp; Technology</topic><topic>secondary metabolism</topic><topic>Secondary metabolites</topic><topic>Signal Transduction</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yanxia</creatorcontrib><creatorcontrib>Lim, Jieyin</creatorcontrib><creatorcontrib>Xu, Jianyang</creatorcontrib><creatorcontrib>Yu, Jae‐Hyuk</creatorcontrib><creatorcontrib>Zheng, Weifa</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yanxia</au><au>Lim, Jieyin</au><au>Xu, Jianyang</au><au>Yu, Jae‐Hyuk</au><au>Zheng, Weifa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric oxide as a developmental and metabolic signal in filamentous fungi</atitle><jtitle>Molecular microbiology</jtitle><stitle>MOL MICROBIOL</stitle><addtitle>Mol Microbiol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>113</volume><issue>5</issue><spage>872</spage><epage>882</epage><pages>872-882</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>The short‐lived hydrophobic gas nitric oxide (NO) is a broadly conserved signaling molecule in all domains of life, including the ubiquitous and versatile filamentous fungi (molds). Several studies have suggested that NO plays a vast and diverse signaling role in molds. In this review, we summarize NO‐mediated signaling and the biosynthesis and degradation of NO in molds, and highlight the recent advances in understanding the NO‐mediated regulation of morphological and physiological processes throughout the fungal life cycle. In particular, we describe the role of NO in molds as a signaling molecule that modulates asexual and sexual development, the formation of infection body appressorium, and the production of secondary metabolites (SMs). In addition, we also summarize NO detoxification and protective mechanisms against nitrooxidative stress. NO signaling is initiated by binding of NO with soluble guanylyl cyclase (sGC). Upon the binding of NO, sGC catalyzes the conversion of GTP to cGMP followed by signal transduction. NO signaling affects diverse aspects of fungal development including conidiation, germination, formation of appressorium and sexual fruiting body. NO signaling is also involved, either as inducer or substrate, in fungal secondary metabolism.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>31968137</pmid><doi>10.1111/mmi.14465</doi><orcidid>https://orcid.org/0000-0002-6401-9195</orcidid><orcidid>https://orcid.org/0000-0003-0342-2578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2020-05, Vol.113 (5), p.872-882
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmed_primary_31968137
source MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects Biochemistry & Molecular Biology
Biodegradation
Biosynthesis
Detoxification
development
filamentous fungi
Fungal Proteins - metabolism
Fungi
Fungi - metabolism
Gene Expression Regulation, Fungal
Host-Pathogen Interactions
Hydrophobicity
Life cycles
Life Sciences & Biomedicine
Metabolic Networks and Pathways
Metabolites
Microbiology
Mold
Nitric oxide
Nitric Oxide - metabolism
nitrooxidative stress
Science & Technology
secondary metabolism
Secondary metabolites
Signal Transduction
Signaling
title Nitric oxide as a developmental and metabolic signal in filamentous fungi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T05%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20oxide%20as%20a%20developmental%20and%20metabolic%20signal%20in%20filamentous%20fungi&rft.jtitle=Molecular%20microbiology&rft.au=Zhao,%20Yanxia&rft.date=2020-05&rft.volume=113&rft.issue=5&rft.spage=872&rft.epage=882&rft.pages=872-882&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.14465&rft_dat=%3Cproquest_pubme%3E2403835856%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403835856&rft_id=info:pmid/31968137&rfr_iscdi=true