METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking

Abstract Motivation Molecular docking methods are extensively used to predict the interaction between protein–ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2021-07, Vol.37 (11), p.1515-1520
Hauptverfasser: Imbernón, Baldomero, Serrano, Antonio, Bueno-Crespo, Andrés, Abellán, José L, Pérez-Sánchez, Horacio, Cecilia, José M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1520
container_issue 11
container_start_page 1515
container_title Bioinformatics (Oxford, England)
container_volume 37
creator Imbernón, Baldomero
Serrano, Antonio
Bueno-Crespo, Andrés
Abellán, José L
Pérez-Sánchez, Horacio
Cecilia, José M
description Abstract Motivation Molecular docking methods are extensively used to predict the interaction between protein–ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exponentially with: (i) the global optimization procedure, (ii) the number and degrees of freedom of molecular conformations generated and (iii) the mathematical complexity of the scoring function. Results In this work, we introduce a novel molecular docking method named METADOCK 2, which incorporates several novel features, such as (i) a ligand-dependent blind docking approach that exhaustively scans the whole protein surface to detect novel allosteric sites, (ii) an optimization method to enable the use of a wide branch of metaheuristics and (iii) a heterogeneous implementation based on multicore CPUs and multiple graphics processing units. Two representative scoring functions implemented in METADOCK 2 are extensively evaluated in terms of computational performance and accuracy using several benchmarks (such as the well-known DUD) against AutoDock 4.2 and AutoDock Vina. Results place METADOCK 2 as an efficient and accurate docking methodology able to deal with complex systems where computational demands are staggering and which outperforms both AutoDock Vina and AutoDock 4. Availability and implementation https://Baldoimbernon@bitbucket.org/Baldoimbernon/metadock_2.git. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btz958
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmed_primary_31960899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz958</oup_id><sourcerecordid>2343035600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-f601b5889bf483ed39bda9cd55aed4390465f6671f84f4aac4e25345465a58ba3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EoqXwCSAv2QTs-tGYXVXKQxRVSGUdOY7dGJw62PECvp6glkrsWM1odO5c6QBwjtEVRoJcl9bbjfGhkZ1V8brsvgTLD8AQEz7JaI7x4X5HZABOYnxDCDHE-DEYECw4yoUYgpfn-Wp6u5w9wfENlLC26zrr6uDTum5TB1sZpHPawUZ3stYp2NjXwahq3WjY18PGO62SkwFWXr3bzfoUHBnpoj7bzRF4vZuvZg_ZYnn_OJsuMkUY6jLDES5ZnovS0JzoioiykkJVjEldUSIQ5cxwPsEmp4ZKqageM0JZf5YsLyUZgcvt3zb4j6RjVzQ2Ku2c3GifYjEmlCDCOEI9yraoCj7GoE3RBtvI8FlgVPzYLP7aLLY2-9zFriKVja72qV99PYC2gE_tP39-A8lGh30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343035600</pqid></control><display><type>article</type><title>METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking</title><source>Oxford University Press Open Access</source><creator>Imbernón, Baldomero ; Serrano, Antonio ; Bueno-Crespo, Andrés ; Abellán, José L ; Pérez-Sánchez, Horacio ; Cecilia, José M</creator><contributor>Valencia, Alfonso</contributor><creatorcontrib>Imbernón, Baldomero ; Serrano, Antonio ; Bueno-Crespo, Andrés ; Abellán, José L ; Pérez-Sánchez, Horacio ; Cecilia, José M ; Valencia, Alfonso</creatorcontrib><description>Abstract Motivation Molecular docking methods are extensively used to predict the interaction between protein–ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exponentially with: (i) the global optimization procedure, (ii) the number and degrees of freedom of molecular conformations generated and (iii) the mathematical complexity of the scoring function. Results In this work, we introduce a novel molecular docking method named METADOCK 2, which incorporates several novel features, such as (i) a ligand-dependent blind docking approach that exhaustively scans the whole protein surface to detect novel allosteric sites, (ii) an optimization method to enable the use of a wide branch of metaheuristics and (iii) a heterogeneous implementation based on multicore CPUs and multiple graphics processing units. Two representative scoring functions implemented in METADOCK 2 are extensively evaluated in terms of computational performance and accuracy using several benchmarks (such as the well-known DUD) against AutoDock 4.2 and AutoDock Vina. Results place METADOCK 2 as an efficient and accurate docking methodology able to deal with complex systems where computational demands are staggering and which outperforms both AutoDock Vina and AutoDock 4. Availability and implementation https://Baldoimbernon@bitbucket.org/Baldoimbernon/metadock_2.git. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz958</identifier><identifier>PMID: 31960899</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics (Oxford, England), 2021-07, Vol.37 (11), p.1515-1520</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) (2020). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-f601b5889bf483ed39bda9cd55aed4390465f6671f84f4aac4e25345465a58ba3</citedby><cites>FETCH-LOGICAL-c350t-f601b5889bf483ed39bda9cd55aed4390465f6671f84f4aac4e25345465a58ba3</cites><orcidid>0000-0003-1734-6852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btz958$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31960899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Valencia, Alfonso</contributor><creatorcontrib>Imbernón, Baldomero</creatorcontrib><creatorcontrib>Serrano, Antonio</creatorcontrib><creatorcontrib>Bueno-Crespo, Andrés</creatorcontrib><creatorcontrib>Abellán, José L</creatorcontrib><creatorcontrib>Pérez-Sánchez, Horacio</creatorcontrib><creatorcontrib>Cecilia, José M</creatorcontrib><title>METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Molecular docking methods are extensively used to predict the interaction between protein–ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exponentially with: (i) the global optimization procedure, (ii) the number and degrees of freedom of molecular conformations generated and (iii) the mathematical complexity of the scoring function. Results In this work, we introduce a novel molecular docking method named METADOCK 2, which incorporates several novel features, such as (i) a ligand-dependent blind docking approach that exhaustively scans the whole protein surface to detect novel allosteric sites, (ii) an optimization method to enable the use of a wide branch of metaheuristics and (iii) a heterogeneous implementation based on multicore CPUs and multiple graphics processing units. Two representative scoring functions implemented in METADOCK 2 are extensively evaluated in terms of computational performance and accuracy using several benchmarks (such as the well-known DUD) against AutoDock 4.2 and AutoDock Vina. Results place METADOCK 2 as an efficient and accurate docking methodology able to deal with complex systems where computational demands are staggering and which outperforms both AutoDock Vina and AutoDock 4. Availability and implementation https://Baldoimbernon@bitbucket.org/Baldoimbernon/metadock_2.git. Supplementary information Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EoqXwCSAv2QTs-tGYXVXKQxRVSGUdOY7dGJw62PECvp6glkrsWM1odO5c6QBwjtEVRoJcl9bbjfGhkZ1V8brsvgTLD8AQEz7JaI7x4X5HZABOYnxDCDHE-DEYECw4yoUYgpfn-Wp6u5w9wfENlLC26zrr6uDTum5TB1sZpHPawUZ3stYp2NjXwahq3WjY18PGO62SkwFWXr3bzfoUHBnpoj7bzRF4vZuvZg_ZYnn_OJsuMkUY6jLDES5ZnovS0JzoioiykkJVjEldUSIQ5cxwPsEmp4ZKqageM0JZf5YsLyUZgcvt3zb4j6RjVzQ2Ku2c3GifYjEmlCDCOEI9yraoCj7GoE3RBtvI8FlgVPzYLP7aLLY2-9zFriKVja72qV99PYC2gE_tP39-A8lGh30</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>Imbernón, Baldomero</creator><creator>Serrano, Antonio</creator><creator>Bueno-Crespo, Andrés</creator><creator>Abellán, José L</creator><creator>Pérez-Sánchez, Horacio</creator><creator>Cecilia, José M</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1734-6852</orcidid></search><sort><creationdate>20210712</creationdate><title>METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking</title><author>Imbernón, Baldomero ; Serrano, Antonio ; Bueno-Crespo, Andrés ; Abellán, José L ; Pérez-Sánchez, Horacio ; Cecilia, José M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-f601b5889bf483ed39bda9cd55aed4390465f6671f84f4aac4e25345465a58ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imbernón, Baldomero</creatorcontrib><creatorcontrib>Serrano, Antonio</creatorcontrib><creatorcontrib>Bueno-Crespo, Andrés</creatorcontrib><creatorcontrib>Abellán, José L</creatorcontrib><creatorcontrib>Pérez-Sánchez, Horacio</creatorcontrib><creatorcontrib>Cecilia, José M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Imbernón, Baldomero</au><au>Serrano, Antonio</au><au>Bueno-Crespo, Andrés</au><au>Abellán, José L</au><au>Pérez-Sánchez, Horacio</au><au>Cecilia, José M</au><au>Valencia, Alfonso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2021-07-12</date><risdate>2021</risdate><volume>37</volume><issue>11</issue><spage>1515</spage><epage>1520</epage><pages>1515-1520</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation Molecular docking methods are extensively used to predict the interaction between protein–ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exponentially with: (i) the global optimization procedure, (ii) the number and degrees of freedom of molecular conformations generated and (iii) the mathematical complexity of the scoring function. Results In this work, we introduce a novel molecular docking method named METADOCK 2, which incorporates several novel features, such as (i) a ligand-dependent blind docking approach that exhaustively scans the whole protein surface to detect novel allosteric sites, (ii) an optimization method to enable the use of a wide branch of metaheuristics and (iii) a heterogeneous implementation based on multicore CPUs and multiple graphics processing units. Two representative scoring functions implemented in METADOCK 2 are extensively evaluated in terms of computational performance and accuracy using several benchmarks (such as the well-known DUD) against AutoDock 4.2 and AutoDock Vina. Results place METADOCK 2 as an efficient and accurate docking methodology able to deal with complex systems where computational demands are staggering and which outperforms both AutoDock Vina and AutoDock 4. Availability and implementation https://Baldoimbernon@bitbucket.org/Baldoimbernon/metadock_2.git. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31960899</pmid><doi>10.1093/bioinformatics/btz958</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1734-6852</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2021-07, Vol.37 (11), p.1515-1520
issn 1367-4803
1367-4811
language eng
recordid cdi_pubmed_primary_31960899
source Oxford University Press Open Access
title METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=METADOCK%202:%20a%20high-throughput%20parallel%20metaheuristic%20scheme%20for%20molecular%20docking&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Imbern%C3%B3n,%20Baldomero&rft.date=2021-07-12&rft.volume=37&rft.issue=11&rft.spage=1515&rft.epage=1520&rft.pages=1515-1520&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btz958&rft_dat=%3Cproquest_TOX%3E2343035600%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343035600&rft_id=info:pmid/31960899&rft_oup_id=10.1093/bioinformatics/btz958&rfr_iscdi=true