METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking
Abstract Motivation Molecular docking methods are extensively used to predict the interaction between protein–ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exp...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2021-07, Vol.37 (11), p.1515-1520 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1520 |
---|---|
container_issue | 11 |
container_start_page | 1515 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 37 |
creator | Imbernón, Baldomero Serrano, Antonio Bueno-Crespo, Andrés Abellán, José L Pérez-Sánchez, Horacio Cecilia, José M |
description | Abstract
Motivation
Molecular docking methods are extensively used to predict the interaction between protein–ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exponentially with: (i) the global optimization procedure, (ii) the number and degrees of freedom of molecular conformations generated and (iii) the mathematical complexity of the scoring function.
Results
In this work, we introduce a novel molecular docking method named METADOCK 2, which incorporates several novel features, such as (i) a ligand-dependent blind docking approach that exhaustively scans the whole protein surface to detect novel allosteric sites, (ii) an optimization method to enable the use of a wide branch of metaheuristics and (iii) a heterogeneous implementation based on multicore CPUs and multiple graphics processing units. Two representative scoring functions implemented in METADOCK 2 are extensively evaluated in terms of computational performance and accuracy using several benchmarks (such as the well-known DUD) against AutoDock 4.2 and AutoDock Vina. Results place METADOCK 2 as an efficient and accurate docking methodology able to deal with complex systems where computational demands are staggering and which outperforms both AutoDock Vina and AutoDock 4.
Availability and implementation
https://Baldoimbernon@bitbucket.org/Baldoimbernon/metadock_2.git.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btz958 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmed_primary_31960899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz958</oup_id><sourcerecordid>2343035600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-f601b5889bf483ed39bda9cd55aed4390465f6671f84f4aac4e25345465a58ba3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EoqXwCSAv2QTs-tGYXVXKQxRVSGUdOY7dGJw62PECvp6glkrsWM1odO5c6QBwjtEVRoJcl9bbjfGhkZ1V8brsvgTLD8AQEz7JaI7x4X5HZABOYnxDCDHE-DEYECw4yoUYgpfn-Wp6u5w9wfENlLC26zrr6uDTum5TB1sZpHPawUZ3stYp2NjXwahq3WjY18PGO62SkwFWXr3bzfoUHBnpoj7bzRF4vZuvZg_ZYnn_OJsuMkUY6jLDES5ZnovS0JzoioiykkJVjEldUSIQ5cxwPsEmp4ZKqageM0JZf5YsLyUZgcvt3zb4j6RjVzQ2Ku2c3GifYjEmlCDCOEI9yraoCj7GoE3RBtvI8FlgVPzYLP7aLLY2-9zFriKVja72qV99PYC2gE_tP39-A8lGh30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343035600</pqid></control><display><type>article</type><title>METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking</title><source>Oxford University Press Open Access</source><creator>Imbernón, Baldomero ; Serrano, Antonio ; Bueno-Crespo, Andrés ; Abellán, José L ; Pérez-Sánchez, Horacio ; Cecilia, José M</creator><contributor>Valencia, Alfonso</contributor><creatorcontrib>Imbernón, Baldomero ; Serrano, Antonio ; Bueno-Crespo, Andrés ; Abellán, José L ; Pérez-Sánchez, Horacio ; Cecilia, José M ; Valencia, Alfonso</creatorcontrib><description>Abstract
Motivation
Molecular docking methods are extensively used to predict the interaction between protein–ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exponentially with: (i) the global optimization procedure, (ii) the number and degrees of freedom of molecular conformations generated and (iii) the mathematical complexity of the scoring function.
Results
In this work, we introduce a novel molecular docking method named METADOCK 2, which incorporates several novel features, such as (i) a ligand-dependent blind docking approach that exhaustively scans the whole protein surface to detect novel allosteric sites, (ii) an optimization method to enable the use of a wide branch of metaheuristics and (iii) a heterogeneous implementation based on multicore CPUs and multiple graphics processing units. Two representative scoring functions implemented in METADOCK 2 are extensively evaluated in terms of computational performance and accuracy using several benchmarks (such as the well-known DUD) against AutoDock 4.2 and AutoDock Vina. Results place METADOCK 2 as an efficient and accurate docking methodology able to deal with complex systems where computational demands are staggering and which outperforms both AutoDock Vina and AutoDock 4.
Availability and implementation
https://Baldoimbernon@bitbucket.org/Baldoimbernon/metadock_2.git.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz958</identifier><identifier>PMID: 31960899</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics (Oxford, England), 2021-07, Vol.37 (11), p.1515-1520</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) (2020). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-f601b5889bf483ed39bda9cd55aed4390465f6671f84f4aac4e25345465a58ba3</citedby><cites>FETCH-LOGICAL-c350t-f601b5889bf483ed39bda9cd55aed4390465f6671f84f4aac4e25345465a58ba3</cites><orcidid>0000-0003-1734-6852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btz958$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31960899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Valencia, Alfonso</contributor><creatorcontrib>Imbernón, Baldomero</creatorcontrib><creatorcontrib>Serrano, Antonio</creatorcontrib><creatorcontrib>Bueno-Crespo, Andrés</creatorcontrib><creatorcontrib>Abellán, José L</creatorcontrib><creatorcontrib>Pérez-Sánchez, Horacio</creatorcontrib><creatorcontrib>Cecilia, José M</creatorcontrib><title>METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Molecular docking methods are extensively used to predict the interaction between protein–ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exponentially with: (i) the global optimization procedure, (ii) the number and degrees of freedom of molecular conformations generated and (iii) the mathematical complexity of the scoring function.
Results
In this work, we introduce a novel molecular docking method named METADOCK 2, which incorporates several novel features, such as (i) a ligand-dependent blind docking approach that exhaustively scans the whole protein surface to detect novel allosteric sites, (ii) an optimization method to enable the use of a wide branch of metaheuristics and (iii) a heterogeneous implementation based on multicore CPUs and multiple graphics processing units. Two representative scoring functions implemented in METADOCK 2 are extensively evaluated in terms of computational performance and accuracy using several benchmarks (such as the well-known DUD) against AutoDock 4.2 and AutoDock Vina. Results place METADOCK 2 as an efficient and accurate docking methodology able to deal with complex systems where computational demands are staggering and which outperforms both AutoDock Vina and AutoDock 4.
Availability and implementation
https://Baldoimbernon@bitbucket.org/Baldoimbernon/metadock_2.git.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EoqXwCSAv2QTs-tGYXVXKQxRVSGUdOY7dGJw62PECvp6glkrsWM1odO5c6QBwjtEVRoJcl9bbjfGhkZ1V8brsvgTLD8AQEz7JaI7x4X5HZABOYnxDCDHE-DEYECw4yoUYgpfn-Wp6u5w9wfENlLC26zrr6uDTum5TB1sZpHPawUZ3stYp2NjXwahq3WjY18PGO62SkwFWXr3bzfoUHBnpoj7bzRF4vZuvZg_ZYnn_OJsuMkUY6jLDES5ZnovS0JzoioiykkJVjEldUSIQ5cxwPsEmp4ZKqageM0JZf5YsLyUZgcvt3zb4j6RjVzQ2Ku2c3GifYjEmlCDCOEI9yraoCj7GoE3RBtvI8FlgVPzYLP7aLLY2-9zFriKVja72qV99PYC2gE_tP39-A8lGh30</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>Imbernón, Baldomero</creator><creator>Serrano, Antonio</creator><creator>Bueno-Crespo, Andrés</creator><creator>Abellán, José L</creator><creator>Pérez-Sánchez, Horacio</creator><creator>Cecilia, José M</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1734-6852</orcidid></search><sort><creationdate>20210712</creationdate><title>METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking</title><author>Imbernón, Baldomero ; Serrano, Antonio ; Bueno-Crespo, Andrés ; Abellán, José L ; Pérez-Sánchez, Horacio ; Cecilia, José M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-f601b5889bf483ed39bda9cd55aed4390465f6671f84f4aac4e25345465a58ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imbernón, Baldomero</creatorcontrib><creatorcontrib>Serrano, Antonio</creatorcontrib><creatorcontrib>Bueno-Crespo, Andrés</creatorcontrib><creatorcontrib>Abellán, José L</creatorcontrib><creatorcontrib>Pérez-Sánchez, Horacio</creatorcontrib><creatorcontrib>Cecilia, José M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Imbernón, Baldomero</au><au>Serrano, Antonio</au><au>Bueno-Crespo, Andrés</au><au>Abellán, José L</au><au>Pérez-Sánchez, Horacio</au><au>Cecilia, José M</au><au>Valencia, Alfonso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2021-07-12</date><risdate>2021</risdate><volume>37</volume><issue>11</issue><spage>1515</spage><epage>1520</epage><pages>1515-1520</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Molecular docking methods are extensively used to predict the interaction between protein–ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exponentially with: (i) the global optimization procedure, (ii) the number and degrees of freedom of molecular conformations generated and (iii) the mathematical complexity of the scoring function.
Results
In this work, we introduce a novel molecular docking method named METADOCK 2, which incorporates several novel features, such as (i) a ligand-dependent blind docking approach that exhaustively scans the whole protein surface to detect novel allosteric sites, (ii) an optimization method to enable the use of a wide branch of metaheuristics and (iii) a heterogeneous implementation based on multicore CPUs and multiple graphics processing units. Two representative scoring functions implemented in METADOCK 2 are extensively evaluated in terms of computational performance and accuracy using several benchmarks (such as the well-known DUD) against AutoDock 4.2 and AutoDock Vina. Results place METADOCK 2 as an efficient and accurate docking methodology able to deal with complex systems where computational demands are staggering and which outperforms both AutoDock Vina and AutoDock 4.
Availability and implementation
https://Baldoimbernon@bitbucket.org/Baldoimbernon/metadock_2.git.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31960899</pmid><doi>10.1093/bioinformatics/btz958</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1734-6852</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2021-07, Vol.37 (11), p.1515-1520 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmed_primary_31960899 |
source | Oxford University Press Open Access |
title | METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=METADOCK%202:%20a%20high-throughput%20parallel%20metaheuristic%20scheme%20for%20molecular%20docking&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Imbern%C3%B3n,%20Baldomero&rft.date=2021-07-12&rft.volume=37&rft.issue=11&rft.spage=1515&rft.epage=1520&rft.pages=1515-1520&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btz958&rft_dat=%3Cproquest_TOX%3E2343035600%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343035600&rft_id=info:pmid/31960899&rft_oup_id=10.1093/bioinformatics/btz958&rfr_iscdi=true |