A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(-isopropylacrylamide--methacrylic acid) microgels

Negatively charged poly( N -isopropylacrylamide- co -methacrylic acid) (P(NIPAm- co -MAA)) microgels undergo size changes in response to changes in temperature and pH. Complexation of these microgels with positively charged polyelectrolytes can greatly affect their physical properties and their capa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2020-01, Vol.16 (4), p.881-89
Hauptverfasser: Giussi, Juan M, Martínez Moro, Marta, Iborra, Agustín, Cortez, M. Lorena, Di Silvio, Desiré, Llarena Conde, Irantzu, Longo, Gabriel S, Azzaroni, Omar, Moya, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue 4
container_start_page 881
container_title Soft matter
container_volume 16
creator Giussi, Juan M
Martínez Moro, Marta
Iborra, Agustín
Cortez, M. Lorena
Di Silvio, Desiré
Llarena Conde, Irantzu
Longo, Gabriel S
Azzaroni, Omar
Moya, Sergio
description Negatively charged poly( N -isopropylacrylamide- co -methacrylic acid) (P(NIPAm- co -MAA)) microgels undergo size changes in response to changes in temperature and pH. Complexation of these microgels with positively charged polyelectrolytes can greatly affect their physical properties and their capacity for encapsulating active molecules. Here we study the interaction between (P(NIPAm- co -MAA)) microgels and a model positively charged polyelectrolyte, poly allylamine hydrochloride (PAH), with different molecular weights. Experiments were conducted at temperatures below and above the lower critical solution temperature (LCST) of the microgel (30-32 °C), at 20 and 40 °C, respectively, and for PAH at molecular weights of 15, 50, and 140 kDa. Below the LCST, dynamic light scattering and zeta potential measurements with molecular simulation show that for the 15 kDa PAH there is preferential accumulation of PAH inside the microgel, whereas for the higher molecular weight PAH, the polyelectrolyte deposits mainly on the microgel surface. Above the LCST, PAH is preferentially located on the surface of the microgels for all molecular weights studied as a result of charge segregation in the hydrogels. Confocal scanning laser microscopy and flow cytometry were used to quantify rhodamine labelled PAH associated with the microgel. Isothermal titration calorimetry studies give insight into the thermodynamics of the interaction of PAH with the hydrogels, and how this interaction is affected by the molecular weight of PAH. Finally, microgels with encapsulated doxorubicin were exposed to PAH, revealing that the drug is displaced from the microgel by the PAH chains. We studied the complex interaction between polyNIPAm-based microgels and a positively charged polyelectrolyte. Also, the microgels were loaded with doxorubicin and its release was evaluated as a function of the polyelectrolyte molecular weight.
doi_str_mv 10.1039/c9sm02070e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31942906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339792220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-986beb61e821a2eb9f0b03b791271d8baa34ef90daad8010d14eafa1fee3ed903</originalsourceid><addsrcrecordid>eNpd0U1v1DAQBmALgWgpXLiDLHEpSAF_NbGP1ap8SK04ABK3yLEnG1dOHGwHyB_h99bdLVupJ9vyM6MZvQi9pOQ9JVx9MCqNhJGGwCN0TBshqloK-fhw5z-P0LOUrgnhUtD6KTriVAmmSH2M_p3jlBe74tDjPAA2YZw9_MVuyhC1yS5MuIP8B2DCc_Ar1t6vXo9uAjysNgYz-BCdBawniyfY6ux-Q3Fm0HELdld0WrkU5hjmUmnirtxCVY2Qh93bGayNs2_x6EwMW_DpOXrSa5_gxd15gn58vPi--Vxdfv30ZXN-WRneiFwpWXfQ1RQko5pBp3rSEd41irKGWtlpzQX0ilitrSSUWCpA95r2ABysIvwEne77lul-LZByO7pkwHs9QVhSyzhXjWKM3dI3D-h1WOJUpitKNGdUSnJW1Lu9KoukFKFv5-hGHdeWkvY2rXajvl3t0roo-PVdy6UbwR7o_3gKeLUHMZnD733c_AYkoZ3L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347518805</pqid></control><display><type>article</type><title>A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(-isopropylacrylamide--methacrylic acid) microgels</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Giussi, Juan M ; Martínez Moro, Marta ; Iborra, Agustín ; Cortez, M. Lorena ; Di Silvio, Desiré ; Llarena Conde, Irantzu ; Longo, Gabriel S ; Azzaroni, Omar ; Moya, Sergio</creator><creatorcontrib>Giussi, Juan M ; Martínez Moro, Marta ; Iborra, Agustín ; Cortez, M. Lorena ; Di Silvio, Desiré ; Llarena Conde, Irantzu ; Longo, Gabriel S ; Azzaroni, Omar ; Moya, Sergio</creatorcontrib><description>Negatively charged poly( N -isopropylacrylamide- co -methacrylic acid) (P(NIPAm- co -MAA)) microgels undergo size changes in response to changes in temperature and pH. Complexation of these microgels with positively charged polyelectrolytes can greatly affect their physical properties and their capacity for encapsulating active molecules. Here we study the interaction between (P(NIPAm- co -MAA)) microgels and a model positively charged polyelectrolyte, poly allylamine hydrochloride (PAH), with different molecular weights. Experiments were conducted at temperatures below and above the lower critical solution temperature (LCST) of the microgel (30-32 °C), at 20 and 40 °C, respectively, and for PAH at molecular weights of 15, 50, and 140 kDa. Below the LCST, dynamic light scattering and zeta potential measurements with molecular simulation show that for the 15 kDa PAH there is preferential accumulation of PAH inside the microgel, whereas for the higher molecular weight PAH, the polyelectrolyte deposits mainly on the microgel surface. Above the LCST, PAH is preferentially located on the surface of the microgels for all molecular weights studied as a result of charge segregation in the hydrogels. Confocal scanning laser microscopy and flow cytometry were used to quantify rhodamine labelled PAH associated with the microgel. Isothermal titration calorimetry studies give insight into the thermodynamics of the interaction of PAH with the hydrogels, and how this interaction is affected by the molecular weight of PAH. Finally, microgels with encapsulated doxorubicin were exposed to PAH, revealing that the drug is displaced from the microgel by the PAH chains. We studied the complex interaction between polyNIPAm-based microgels and a positively charged polyelectrolyte. Also, the microgels were loaded with doxorubicin and its release was evaluated as a function of the polyelectrolyte molecular weight.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm02070e</identifier><identifier>PMID: 31942906</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Calorimetry ; Computer simulation ; Doxorubicin ; Encapsulation ; Flow cytometry ; Hydrogels ; Isopropylacrylamide ; Laser microscopy ; Light scattering ; Methacrylic acid ; Microgels ; Molecular weight ; Photon correlation spectroscopy ; Physical properties ; Polyelectrolytes ; Rhodamine ; Temperature ; Titration ; Titration calorimetry ; Zeta potential</subject><ispartof>Soft matter, 2020-01, Vol.16 (4), p.881-89</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-986beb61e821a2eb9f0b03b791271d8baa34ef90daad8010d14eafa1fee3ed903</citedby><cites>FETCH-LOGICAL-c374t-986beb61e821a2eb9f0b03b791271d8baa34ef90daad8010d14eafa1fee3ed903</cites><orcidid>0000-0001-9113-9873 ; 0000-0002-7174-1960 ; 0000-0001-8353-5163 ; 0000-0002-5098-0612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31942906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giussi, Juan M</creatorcontrib><creatorcontrib>Martínez Moro, Marta</creatorcontrib><creatorcontrib>Iborra, Agustín</creatorcontrib><creatorcontrib>Cortez, M. Lorena</creatorcontrib><creatorcontrib>Di Silvio, Desiré</creatorcontrib><creatorcontrib>Llarena Conde, Irantzu</creatorcontrib><creatorcontrib>Longo, Gabriel S</creatorcontrib><creatorcontrib>Azzaroni, Omar</creatorcontrib><creatorcontrib>Moya, Sergio</creatorcontrib><title>A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(-isopropylacrylamide--methacrylic acid) microgels</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Negatively charged poly( N -isopropylacrylamide- co -methacrylic acid) (P(NIPAm- co -MAA)) microgels undergo size changes in response to changes in temperature and pH. Complexation of these microgels with positively charged polyelectrolytes can greatly affect their physical properties and their capacity for encapsulating active molecules. Here we study the interaction between (P(NIPAm- co -MAA)) microgels and a model positively charged polyelectrolyte, poly allylamine hydrochloride (PAH), with different molecular weights. Experiments were conducted at temperatures below and above the lower critical solution temperature (LCST) of the microgel (30-32 °C), at 20 and 40 °C, respectively, and for PAH at molecular weights of 15, 50, and 140 kDa. Below the LCST, dynamic light scattering and zeta potential measurements with molecular simulation show that for the 15 kDa PAH there is preferential accumulation of PAH inside the microgel, whereas for the higher molecular weight PAH, the polyelectrolyte deposits mainly on the microgel surface. Above the LCST, PAH is preferentially located on the surface of the microgels for all molecular weights studied as a result of charge segregation in the hydrogels. Confocal scanning laser microscopy and flow cytometry were used to quantify rhodamine labelled PAH associated with the microgel. Isothermal titration calorimetry studies give insight into the thermodynamics of the interaction of PAH with the hydrogels, and how this interaction is affected by the molecular weight of PAH. Finally, microgels with encapsulated doxorubicin were exposed to PAH, revealing that the drug is displaced from the microgel by the PAH chains. We studied the complex interaction between polyNIPAm-based microgels and a positively charged polyelectrolyte. Also, the microgels were loaded with doxorubicin and its release was evaluated as a function of the polyelectrolyte molecular weight.</description><subject>Calorimetry</subject><subject>Computer simulation</subject><subject>Doxorubicin</subject><subject>Encapsulation</subject><subject>Flow cytometry</subject><subject>Hydrogels</subject><subject>Isopropylacrylamide</subject><subject>Laser microscopy</subject><subject>Light scattering</subject><subject>Methacrylic acid</subject><subject>Microgels</subject><subject>Molecular weight</subject><subject>Photon correlation spectroscopy</subject><subject>Physical properties</subject><subject>Polyelectrolytes</subject><subject>Rhodamine</subject><subject>Temperature</subject><subject>Titration</subject><subject>Titration calorimetry</subject><subject>Zeta potential</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0U1v1DAQBmALgWgpXLiDLHEpSAF_NbGP1ap8SK04ABK3yLEnG1dOHGwHyB_h99bdLVupJ9vyM6MZvQi9pOQ9JVx9MCqNhJGGwCN0TBshqloK-fhw5z-P0LOUrgnhUtD6KTriVAmmSH2M_p3jlBe74tDjPAA2YZw9_MVuyhC1yS5MuIP8B2DCc_Ar1t6vXo9uAjysNgYz-BCdBawniyfY6ux-Q3Fm0HELdld0WrkU5hjmUmnirtxCVY2Qh93bGayNs2_x6EwMW_DpOXrSa5_gxd15gn58vPi--Vxdfv30ZXN-WRneiFwpWXfQ1RQko5pBp3rSEd41irKGWtlpzQX0ilitrSSUWCpA95r2ABysIvwEne77lul-LZByO7pkwHs9QVhSyzhXjWKM3dI3D-h1WOJUpitKNGdUSnJW1Lu9KoukFKFv5-hGHdeWkvY2rXajvl3t0roo-PVdy6UbwR7o_3gKeLUHMZnD733c_AYkoZ3L</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Giussi, Juan M</creator><creator>Martínez Moro, Marta</creator><creator>Iborra, Agustín</creator><creator>Cortez, M. Lorena</creator><creator>Di Silvio, Desiré</creator><creator>Llarena Conde, Irantzu</creator><creator>Longo, Gabriel S</creator><creator>Azzaroni, Omar</creator><creator>Moya, Sergio</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9113-9873</orcidid><orcidid>https://orcid.org/0000-0002-7174-1960</orcidid><orcidid>https://orcid.org/0000-0001-8353-5163</orcidid><orcidid>https://orcid.org/0000-0002-5098-0612</orcidid></search><sort><creationdate>20200128</creationdate><title>A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(-isopropylacrylamide--methacrylic acid) microgels</title><author>Giussi, Juan M ; Martínez Moro, Marta ; Iborra, Agustín ; Cortez, M. Lorena ; Di Silvio, Desiré ; Llarena Conde, Irantzu ; Longo, Gabriel S ; Azzaroni, Omar ; Moya, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-986beb61e821a2eb9f0b03b791271d8baa34ef90daad8010d14eafa1fee3ed903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calorimetry</topic><topic>Computer simulation</topic><topic>Doxorubicin</topic><topic>Encapsulation</topic><topic>Flow cytometry</topic><topic>Hydrogels</topic><topic>Isopropylacrylamide</topic><topic>Laser microscopy</topic><topic>Light scattering</topic><topic>Methacrylic acid</topic><topic>Microgels</topic><topic>Molecular weight</topic><topic>Photon correlation spectroscopy</topic><topic>Physical properties</topic><topic>Polyelectrolytes</topic><topic>Rhodamine</topic><topic>Temperature</topic><topic>Titration</topic><topic>Titration calorimetry</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giussi, Juan M</creatorcontrib><creatorcontrib>Martínez Moro, Marta</creatorcontrib><creatorcontrib>Iborra, Agustín</creatorcontrib><creatorcontrib>Cortez, M. Lorena</creatorcontrib><creatorcontrib>Di Silvio, Desiré</creatorcontrib><creatorcontrib>Llarena Conde, Irantzu</creatorcontrib><creatorcontrib>Longo, Gabriel S</creatorcontrib><creatorcontrib>Azzaroni, Omar</creatorcontrib><creatorcontrib>Moya, Sergio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giussi, Juan M</au><au>Martínez Moro, Marta</au><au>Iborra, Agustín</au><au>Cortez, M. Lorena</au><au>Di Silvio, Desiré</au><au>Llarena Conde, Irantzu</au><au>Longo, Gabriel S</au><au>Azzaroni, Omar</au><au>Moya, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(-isopropylacrylamide--methacrylic acid) microgels</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>881</spage><epage>89</epage><pages>881-89</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Negatively charged poly( N -isopropylacrylamide- co -methacrylic acid) (P(NIPAm- co -MAA)) microgels undergo size changes in response to changes in temperature and pH. Complexation of these microgels with positively charged polyelectrolytes can greatly affect their physical properties and their capacity for encapsulating active molecules. Here we study the interaction between (P(NIPAm- co -MAA)) microgels and a model positively charged polyelectrolyte, poly allylamine hydrochloride (PAH), with different molecular weights. Experiments were conducted at temperatures below and above the lower critical solution temperature (LCST) of the microgel (30-32 °C), at 20 and 40 °C, respectively, and for PAH at molecular weights of 15, 50, and 140 kDa. Below the LCST, dynamic light scattering and zeta potential measurements with molecular simulation show that for the 15 kDa PAH there is preferential accumulation of PAH inside the microgel, whereas for the higher molecular weight PAH, the polyelectrolyte deposits mainly on the microgel surface. Above the LCST, PAH is preferentially located on the surface of the microgels for all molecular weights studied as a result of charge segregation in the hydrogels. Confocal scanning laser microscopy and flow cytometry were used to quantify rhodamine labelled PAH associated with the microgel. Isothermal titration calorimetry studies give insight into the thermodynamics of the interaction of PAH with the hydrogels, and how this interaction is affected by the molecular weight of PAH. Finally, microgels with encapsulated doxorubicin were exposed to PAH, revealing that the drug is displaced from the microgel by the PAH chains. We studied the complex interaction between polyNIPAm-based microgels and a positively charged polyelectrolyte. Also, the microgels were loaded with doxorubicin and its release was evaluated as a function of the polyelectrolyte molecular weight.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31942906</pmid><doi>10.1039/c9sm02070e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9113-9873</orcidid><orcidid>https://orcid.org/0000-0002-7174-1960</orcidid><orcidid>https://orcid.org/0000-0001-8353-5163</orcidid><orcidid>https://orcid.org/0000-0002-5098-0612</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2020-01, Vol.16 (4), p.881-89
issn 1744-683X
1744-6848
language eng
recordid cdi_pubmed_primary_31942906
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Calorimetry
Computer simulation
Doxorubicin
Encapsulation
Flow cytometry
Hydrogels
Isopropylacrylamide
Laser microscopy
Light scattering
Methacrylic acid
Microgels
Molecular weight
Photon correlation spectroscopy
Physical properties
Polyelectrolytes
Rhodamine
Temperature
Titration
Titration calorimetry
Zeta potential
title A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(-isopropylacrylamide--methacrylic acid) microgels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20of%20the%20complex%20interaction%20between%20poly%20allylamine%20hydrochloride%20and%20negatively%20charged%20poly(-isopropylacrylamide--methacrylic%20acid)%20microgels&rft.jtitle=Soft%20matter&rft.au=Giussi,%20Juan%20M&rft.date=2020-01-28&rft.volume=16&rft.issue=4&rft.spage=881&rft.epage=89&rft.pages=881-89&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm02070e&rft_dat=%3Cproquest_pubme%3E2339792220%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347518805&rft_id=info:pmid/31942906&rfr_iscdi=true