Robust Bayesian Inference via Coarsening

The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to Bayesian inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2019-07, Vol.114 (527), p.1113-1125
Hauptverfasser: Miller, Jeffrey W., Dunson, David B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1125
container_issue 527
container_start_page 1113
container_title Journal of the American Statistical Association
container_volume 114
creator Miller, Jeffrey W.
Dunson, David B.
description The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to Bayesian inference that improves robustness to small departures from the model: rather than conditioning on the event that the observed data are generated by the model, one conditions on the event that the model generates data close to the observed data, in a distributional sense. When closeness is defined in terms of relative entropy, the resulting "coarsened" posterior can be approximated by simply tempering the likelihood-that is, by raising the likelihood to a fractional power-thus, inference can usually be implemented via standard algorithms, and one can even obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, and we illustrate the approach with real and simulated data using mixture models and autoregressive models of unknown order. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2018.1469995
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31942084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45218583</jstor_id><sourcerecordid>45218583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-a8fa7683424434d9ef895e0107941028a2515c52ffd6ca7a77a351368671ce503</originalsourceid><addsrcrecordid>eNqNkVtrVDEUhYModlr9CcqACH05Y-6XF6kOXgoFQVrwLexmkprhTFKTcyrz75vDTEv1oTQv-yHfXqy9FkJvCF4QrPEHTCQlXJgFxUQvCJfGGPEMzYhgqqOK_3qOZhPTTdABOqx1jdtTWr9EB4wYTrHmM3T8M1-OdZh_hq2vEdL8NAVffHJ-fhNhvsxQqk8xXb1CLwL01b_ezyN08fXL-fJ7d_bj2-ny01nnhKFDBzqAkppxyjnjK-ODNsJjgpXhBFMNVBDhBA1hJR0oUAqYIExqqYjzArMj9HGnez1ebvzK-TQU6O11iRsoW5sh2n9_Uvxtr_KNlUYSI1kTON4LlPxn9HWwm1id73tIPo_VUqa10go_CWWm-W5pNvTdf-g6jyW1JCylpoXPhNKNEjvKlVxr8eHeN8F2qs3e1Wan2uy-trb39uHR91t3PTXg_Q5Y1yGXh6qUYWW5oEQLPV10suNiCrls4G8u_coOsO1zCQWSi7WJPurlFnJUr9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296993578</pqid></control><display><type>article</type><title>Robust Bayesian Inference via Coarsening</title><source>Taylor &amp; Francis Journals Complete</source><creator>Miller, Jeffrey W. ; Dunson, David B.</creator><creatorcontrib>Miller, Jeffrey W. ; Dunson, David B.</creatorcontrib><description>The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to Bayesian inference that improves robustness to small departures from the model: rather than conditioning on the event that the observed data are generated by the model, one conditions on the event that the model generates data close to the observed data, in a distributional sense. When closeness is defined in terms of relative entropy, the resulting "coarsened" posterior can be approximated by simply tempering the likelihood-that is, by raising the likelihood to a fractional power-thus, inference can usually be implemented via standard algorithms, and one can even obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, and we illustrate the approach with real and simulated data using mixture models and autoregressive models of unknown order. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>ISSN: 1537-274X</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2018.1469995</identifier><identifier>PMID: 31942084</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Algorithms ; Autoregressive models ; Bayesian analysis ; Bayesian theory ; Closeness ; Clustering ; Coarsening ; Computer simulation ; Conditioning ; Data collection ; Entropy ; equations ; Exact solutions ; Inference ; Model error ; Model misspecification ; Power ; Power likelihood ; Probabilistic models ; Regression analysis ; Relative entropy ; Robustness ; Statistical inference ; Statistical methods ; Statistics ; Tempering ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.1113-1125</ispartof><rights>2018 American Statistical Association 2018</rights><rights>Copyright © 2019 American Statistical Association</rights><rights>2018 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-a8fa7683424434d9ef895e0107941028a2515c52ffd6ca7a77a351368671ce503</citedby><cites>FETCH-LOGICAL-c592t-a8fa7683424434d9ef895e0107941028a2515c52ffd6ca7a77a351368671ce503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2018.1469995$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2018.1469995$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,59624,60413</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31942084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Jeffrey W.</creatorcontrib><creatorcontrib>Dunson, David B.</creatorcontrib><title>Robust Bayesian Inference via Coarsening</title><title>Journal of the American Statistical Association</title><addtitle>J Am Stat Assoc</addtitle><description>The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to Bayesian inference that improves robustness to small departures from the model: rather than conditioning on the event that the observed data are generated by the model, one conditions on the event that the model generates data close to the observed data, in a distributional sense. When closeness is defined in terms of relative entropy, the resulting "coarsened" posterior can be approximated by simply tempering the likelihood-that is, by raising the likelihood to a fractional power-thus, inference can usually be implemented via standard algorithms, and one can even obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, and we illustrate the approach with real and simulated data using mixture models and autoregressive models of unknown order. Supplementary materials for this article are available online.</description><subject>Algorithms</subject><subject>Autoregressive models</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Closeness</subject><subject>Clustering</subject><subject>Coarsening</subject><subject>Computer simulation</subject><subject>Conditioning</subject><subject>Data collection</subject><subject>Entropy</subject><subject>equations</subject><subject>Exact solutions</subject><subject>Inference</subject><subject>Model error</subject><subject>Model misspecification</subject><subject>Power</subject><subject>Power likelihood</subject><subject>Probabilistic models</subject><subject>Regression analysis</subject><subject>Relative entropy</subject><subject>Robustness</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Tempering</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkVtrVDEUhYModlr9CcqACH05Y-6XF6kOXgoFQVrwLexmkprhTFKTcyrz75vDTEv1oTQv-yHfXqy9FkJvCF4QrPEHTCQlXJgFxUQvCJfGGPEMzYhgqqOK_3qOZhPTTdABOqx1jdtTWr9EB4wYTrHmM3T8M1-OdZh_hq2vEdL8NAVffHJ-fhNhvsxQqk8xXb1CLwL01b_ezyN08fXL-fJ7d_bj2-ny01nnhKFDBzqAkppxyjnjK-ODNsJjgpXhBFMNVBDhBA1hJR0oUAqYIExqqYjzArMj9HGnez1ebvzK-TQU6O11iRsoW5sh2n9_Uvxtr_KNlUYSI1kTON4LlPxn9HWwm1id73tIPo_VUqa10go_CWWm-W5pNvTdf-g6jyW1JCylpoXPhNKNEjvKlVxr8eHeN8F2qs3e1Wan2uy-trb39uHR91t3PTXg_Q5Y1yGXh6qUYWW5oEQLPV10suNiCrls4G8u_coOsO1zCQWSi7WJPurlFnJUr9A</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Miller, Jeffrey W.</creator><creator>Dunson, David B.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group, LLC</general><general>Taylor &amp; Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190703</creationdate><title>Robust Bayesian Inference via Coarsening</title><author>Miller, Jeffrey W. ; Dunson, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-a8fa7683424434d9ef895e0107941028a2515c52ffd6ca7a77a351368671ce503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Autoregressive models</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Closeness</topic><topic>Clustering</topic><topic>Coarsening</topic><topic>Computer simulation</topic><topic>Conditioning</topic><topic>Data collection</topic><topic>Entropy</topic><topic>equations</topic><topic>Exact solutions</topic><topic>Inference</topic><topic>Model error</topic><topic>Model misspecification</topic><topic>Power</topic><topic>Power likelihood</topic><topic>Probabilistic models</topic><topic>Regression analysis</topic><topic>Relative entropy</topic><topic>Robustness</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Tempering</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jeffrey W.</creatorcontrib><creatorcontrib>Dunson, David B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jeffrey W.</au><au>Dunson, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Bayesian Inference via Coarsening</atitle><jtitle>Journal of the American Statistical Association</jtitle><addtitle>J Am Stat Assoc</addtitle><date>2019-07-03</date><risdate>2019</risdate><volume>114</volume><issue>527</issue><spage>1113</spage><epage>1125</epage><pages>1113-1125</pages><issn>0162-1459</issn><issn>1537-274X</issn><eissn>1537-274X</eissn><abstract>The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to Bayesian inference that improves robustness to small departures from the model: rather than conditioning on the event that the observed data are generated by the model, one conditions on the event that the model generates data close to the observed data, in a distributional sense. When closeness is defined in terms of relative entropy, the resulting "coarsened" posterior can be approximated by simply tempering the likelihood-that is, by raising the likelihood to a fractional power-thus, inference can usually be implemented via standard algorithms, and one can even obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, and we illustrate the approach with real and simulated data using mixture models and autoregressive models of unknown order. Supplementary materials for this article are available online.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>31942084</pmid><doi>10.1080/01621459.2018.1469995</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.1113-1125
issn 0162-1459
1537-274X
1537-274X
language eng
recordid cdi_pubmed_primary_31942084
source Taylor & Francis Journals Complete
subjects Algorithms
Autoregressive models
Bayesian analysis
Bayesian theory
Closeness
Clustering
Coarsening
Computer simulation
Conditioning
Data collection
Entropy
equations
Exact solutions
Inference
Model error
Model misspecification
Power
Power likelihood
Probabilistic models
Regression analysis
Relative entropy
Robustness
Statistical inference
Statistical methods
Statistics
Tempering
Theory and Methods
title Robust Bayesian Inference via Coarsening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Bayesian%20Inference%20via%20Coarsening&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Miller,%20Jeffrey%20W.&rft.date=2019-07-03&rft.volume=114&rft.issue=527&rft.spage=1113&rft.epage=1125&rft.pages=1113-1125&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2018.1469995&rft_dat=%3Cjstor_pubme%3E45218583%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296993578&rft_id=info:pmid/31942084&rft_jstor_id=45218583&rfr_iscdi=true