Robust Bayesian Inference via Coarsening
The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to Bayesian inf...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2019-07, Vol.114 (527), p.1113-1125 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1125 |
---|---|
container_issue | 527 |
container_start_page | 1113 |
container_title | Journal of the American Statistical Association |
container_volume | 114 |
creator | Miller, Jeffrey W. Dunson, David B. |
description | The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to Bayesian inference that improves robustness to small departures from the model: rather than conditioning on the event that the observed data are generated by the model, one conditions on the event that the model generates data close to the observed data, in a distributional sense. When closeness is defined in terms of relative entropy, the resulting "coarsened" posterior can be approximated by simply tempering the likelihood-that is, by raising the likelihood to a fractional power-thus, inference can usually be implemented via standard algorithms, and one can even obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, and we illustrate the approach with real and simulated data using mixture models and autoregressive models of unknown order. Supplementary materials for this article are available online. |
doi_str_mv | 10.1080/01621459.2018.1469995 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31942084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45218583</jstor_id><sourcerecordid>45218583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-a8fa7683424434d9ef895e0107941028a2515c52ffd6ca7a77a351368671ce503</originalsourceid><addsrcrecordid>eNqNkVtrVDEUhYModlr9CcqACH05Y-6XF6kOXgoFQVrwLexmkprhTFKTcyrz75vDTEv1oTQv-yHfXqy9FkJvCF4QrPEHTCQlXJgFxUQvCJfGGPEMzYhgqqOK_3qOZhPTTdABOqx1jdtTWr9EB4wYTrHmM3T8M1-OdZh_hq2vEdL8NAVffHJ-fhNhvsxQqk8xXb1CLwL01b_ezyN08fXL-fJ7d_bj2-ny01nnhKFDBzqAkppxyjnjK-ODNsJjgpXhBFMNVBDhBA1hJR0oUAqYIExqqYjzArMj9HGnez1ebvzK-TQU6O11iRsoW5sh2n9_Uvxtr_KNlUYSI1kTON4LlPxn9HWwm1id73tIPo_VUqa10go_CWWm-W5pNvTdf-g6jyW1JCylpoXPhNKNEjvKlVxr8eHeN8F2qs3e1Wan2uy-trb39uHR91t3PTXg_Q5Y1yGXh6qUYWW5oEQLPV10suNiCrls4G8u_coOsO1zCQWSi7WJPurlFnJUr9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296993578</pqid></control><display><type>article</type><title>Robust Bayesian Inference via Coarsening</title><source>Taylor & Francis Journals Complete</source><creator>Miller, Jeffrey W. ; Dunson, David B.</creator><creatorcontrib>Miller, Jeffrey W. ; Dunson, David B.</creatorcontrib><description>The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to Bayesian inference that improves robustness to small departures from the model: rather than conditioning on the event that the observed data are generated by the model, one conditions on the event that the model generates data close to the observed data, in a distributional sense. When closeness is defined in terms of relative entropy, the resulting "coarsened" posterior can be approximated by simply tempering the likelihood-that is, by raising the likelihood to a fractional power-thus, inference can usually be implemented via standard algorithms, and one can even obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, and we illustrate the approach with real and simulated data using mixture models and autoregressive models of unknown order. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>ISSN: 1537-274X</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2018.1469995</identifier><identifier>PMID: 31942084</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Algorithms ; Autoregressive models ; Bayesian analysis ; Bayesian theory ; Closeness ; Clustering ; Coarsening ; Computer simulation ; Conditioning ; Data collection ; Entropy ; equations ; Exact solutions ; Inference ; Model error ; Model misspecification ; Power ; Power likelihood ; Probabilistic models ; Regression analysis ; Relative entropy ; Robustness ; Statistical inference ; Statistical methods ; Statistics ; Tempering ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.1113-1125</ispartof><rights>2018 American Statistical Association 2018</rights><rights>Copyright © 2019 American Statistical Association</rights><rights>2018 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-a8fa7683424434d9ef895e0107941028a2515c52ffd6ca7a77a351368671ce503</citedby><cites>FETCH-LOGICAL-c592t-a8fa7683424434d9ef895e0107941028a2515c52ffd6ca7a77a351368671ce503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2018.1469995$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2018.1469995$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,59624,60413</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31942084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Jeffrey W.</creatorcontrib><creatorcontrib>Dunson, David B.</creatorcontrib><title>Robust Bayesian Inference via Coarsening</title><title>Journal of the American Statistical Association</title><addtitle>J Am Stat Assoc</addtitle><description>The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to Bayesian inference that improves robustness to small departures from the model: rather than conditioning on the event that the observed data are generated by the model, one conditions on the event that the model generates data close to the observed data, in a distributional sense. When closeness is defined in terms of relative entropy, the resulting "coarsened" posterior can be approximated by simply tempering the likelihood-that is, by raising the likelihood to a fractional power-thus, inference can usually be implemented via standard algorithms, and one can even obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, and we illustrate the approach with real and simulated data using mixture models and autoregressive models of unknown order. Supplementary materials for this article are available online.</description><subject>Algorithms</subject><subject>Autoregressive models</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Closeness</subject><subject>Clustering</subject><subject>Coarsening</subject><subject>Computer simulation</subject><subject>Conditioning</subject><subject>Data collection</subject><subject>Entropy</subject><subject>equations</subject><subject>Exact solutions</subject><subject>Inference</subject><subject>Model error</subject><subject>Model misspecification</subject><subject>Power</subject><subject>Power likelihood</subject><subject>Probabilistic models</subject><subject>Regression analysis</subject><subject>Relative entropy</subject><subject>Robustness</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Tempering</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkVtrVDEUhYModlr9CcqACH05Y-6XF6kOXgoFQVrwLexmkprhTFKTcyrz75vDTEv1oTQv-yHfXqy9FkJvCF4QrPEHTCQlXJgFxUQvCJfGGPEMzYhgqqOK_3qOZhPTTdABOqx1jdtTWr9EB4wYTrHmM3T8M1-OdZh_hq2vEdL8NAVffHJ-fhNhvsxQqk8xXb1CLwL01b_ezyN08fXL-fJ7d_bj2-ny01nnhKFDBzqAkppxyjnjK-ODNsJjgpXhBFMNVBDhBA1hJR0oUAqYIExqqYjzArMj9HGnez1ebvzK-TQU6O11iRsoW5sh2n9_Uvxtr_KNlUYSI1kTON4LlPxn9HWwm1id73tIPo_VUqa10go_CWWm-W5pNvTdf-g6jyW1JCylpoXPhNKNEjvKlVxr8eHeN8F2qs3e1Wan2uy-trb39uHR91t3PTXg_Q5Y1yGXh6qUYWW5oEQLPV10suNiCrls4G8u_coOsO1zCQWSi7WJPurlFnJUr9A</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Miller, Jeffrey W.</creator><creator>Dunson, David B.</creator><general>Taylor & Francis</general><general>Taylor & Francis Group, LLC</general><general>Taylor & Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190703</creationdate><title>Robust Bayesian Inference via Coarsening</title><author>Miller, Jeffrey W. ; Dunson, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-a8fa7683424434d9ef895e0107941028a2515c52ffd6ca7a77a351368671ce503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Autoregressive models</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Closeness</topic><topic>Clustering</topic><topic>Coarsening</topic><topic>Computer simulation</topic><topic>Conditioning</topic><topic>Data collection</topic><topic>Entropy</topic><topic>equations</topic><topic>Exact solutions</topic><topic>Inference</topic><topic>Model error</topic><topic>Model misspecification</topic><topic>Power</topic><topic>Power likelihood</topic><topic>Probabilistic models</topic><topic>Regression analysis</topic><topic>Relative entropy</topic><topic>Robustness</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Tempering</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jeffrey W.</creatorcontrib><creatorcontrib>Dunson, David B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jeffrey W.</au><au>Dunson, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Bayesian Inference via Coarsening</atitle><jtitle>Journal of the American Statistical Association</jtitle><addtitle>J Am Stat Assoc</addtitle><date>2019-07-03</date><risdate>2019</risdate><volume>114</volume><issue>527</issue><spage>1113</spage><epage>1125</epage><pages>1113-1125</pages><issn>0162-1459</issn><issn>1537-274X</issn><eissn>1537-274X</eissn><abstract>The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to Bayesian inference that improves robustness to small departures from the model: rather than conditioning on the event that the observed data are generated by the model, one conditions on the event that the model generates data close to the observed data, in a distributional sense. When closeness is defined in terms of relative entropy, the resulting "coarsened" posterior can be approximated by simply tempering the likelihood-that is, by raising the likelihood to a fractional power-thus, inference can usually be implemented via standard algorithms, and one can even obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, and we illustrate the approach with real and simulated data using mixture models and autoregressive models of unknown order. Supplementary materials for this article are available online.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>31942084</pmid><doi>10.1080/01621459.2018.1469995</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.1113-1125 |
issn | 0162-1459 1537-274X 1537-274X |
language | eng |
recordid | cdi_pubmed_primary_31942084 |
source | Taylor & Francis Journals Complete |
subjects | Algorithms Autoregressive models Bayesian analysis Bayesian theory Closeness Clustering Coarsening Computer simulation Conditioning Data collection Entropy equations Exact solutions Inference Model error Model misspecification Power Power likelihood Probabilistic models Regression analysis Relative entropy Robustness Statistical inference Statistical methods Statistics Tempering Theory and Methods |
title | Robust Bayesian Inference via Coarsening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Bayesian%20Inference%20via%20Coarsening&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Miller,%20Jeffrey%20W.&rft.date=2019-07-03&rft.volume=114&rft.issue=527&rft.spage=1113&rft.epage=1125&rft.pages=1113-1125&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2018.1469995&rft_dat=%3Cjstor_pubme%3E45218583%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296993578&rft_id=info:pmid/31942084&rft_jstor_id=45218583&rfr_iscdi=true |