The effect of different levels of leachate on phytoremediation of pyrene-contaminated soil and simultaneous extraction of lead and cadmium

Pyrene is one of the 16 group combinations of polyaromatic hydrocarbons, which are known as primary pollutants in the U.S. Environmental Protection Agency (USEPA) list. This study aimed to investigate the cross effect of different levels of landfill leachate on phytoremediation of pyrene-contaminate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2020-05, Vol.246, p.125845-125845, Article 125845
Hauptverfasser: Salehi, Nasim, Azhdarpoor, Abooalfazl, Shirdarreh, Mohammadreza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pyrene is one of the 16 group combinations of polyaromatic hydrocarbons, which are known as primary pollutants in the U.S. Environmental Protection Agency (USEPA) list. This study aimed to investigate the cross effect of different levels of landfill leachate on phytoremediation of pyrene-contaminated soil using the sorghum bicolor plant. The study parameters included the presence or absence of the plant, different concentrations of pyrene (150, 300, 500, 750, and 1000 mg kg−1), time (30, 60, and 90 days), and different levels of irrigation with leachate (0, 30, 50, 70, and 100%). Soil pyrene was measured every 30 days, and heavy metals (lead and cadmium) added to the soil by irrigation with leachate were measured in the soil and the plant at the end of 90 days. According to the results, pyrene removal efficiency after 90 days was 96% in irrigation treatments with 30% leachate in the presence of the plant and 67% in irrigation treatments with tap water in the presence of the plant. In addition, 95% of lead and 49% of cadmium added to the soil by irrigation with 30% leachate were extracted from the soil by the sorghum bicolor. According to the results, by increasing nutrients and number of soil bacteria during the cross treatment, landfill leachate increased the pyrene removal efficiency significantly during phytoremediation (p 
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2020.125845