Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2

A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-12, Vol.151 (23), p.234109
Hauptverfasser: Belcher, Lachlan T, Lewis, 3rd, Charlton D, Kedziora, Gary S, Weeks, David E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 234109
container_title The Journal of chemical physics
container_volume 151
creator Belcher, Lachlan T
Lewis, 3rd, Charlton D
Kedziora, Gary S
Weeks, David E
description A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin's 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner's analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented.
doi_str_mv 10.1063/1.5126801
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_31864271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31864271</sourcerecordid><originalsourceid>FETCH-pubmed_primary_318642713</originalsourceid><addsrcrecordid>eNpjYBA0NNAzNDAz1jfUMzU0MrMwMGRi4DQ0sLDUNTezNOBg4CouzjIwMDA0NzJhZ-AwNrQwMzEyN-RkWO6Yl5hTWZKZrJCXn6ebmJKZmJQI4qWkFmWWAVllqQrJ-aUFOZl56QolqUW5xQpp-UUKxQWZebr5RUmZJQq-Qc6eCuWJZalppXnJJZn5ecV6Cp6eegouOA1IzEtBCCXmpeekgs309kh1VDBSOLdAwVDfSOFR-xSggBNIYDFIgIeBNS0xpziVF0pzM8i5uYY4e-gWlCblpqbEFxRl5iYWVcbDfGZMUAEAlz1ehQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Belcher, Lachlan T ; Lewis, 3rd, Charlton D ; Kedziora, Gary S ; Weeks, David E</creator><creatorcontrib>Belcher, Lachlan T ; Lewis, 3rd, Charlton D ; Kedziora, Gary S ; Weeks, David E</creatorcontrib><description>A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin's 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner's analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented.</description><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5126801</identifier><identifier>PMID: 31864271</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2019-12, Vol.151 (23), p.234109</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000222504125 ; 0000000290741667 ; 0000000321125921 ; 0000000298012637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31864271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belcher, Lachlan T</creatorcontrib><creatorcontrib>Lewis, 3rd, Charlton D</creatorcontrib><creatorcontrib>Kedziora, Gary S</creatorcontrib><creatorcontrib>Weeks, David E</creatorcontrib><title>Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin's 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner's analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented.</description><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpjYBA0NNAzNDAz1jfUMzU0MrMwMGRi4DQ0sLDUNTezNOBg4CouzjIwMDA0NzJhZ-AwNrQwMzEyN-RkWO6Yl5hTWZKZrJCXn6ebmJKZmJQI4qWkFmWWAVllqQrJ-aUFOZl56QolqUW5xQpp-UUKxQWZebr5RUmZJQq-Qc6eCuWJZalppXnJJZn5ecV6Cp6eegouOA1IzEtBCCXmpeekgs309kh1VDBSOLdAwVDfSOFR-xSggBNIYDFIgIeBNS0xpziVF0pzM8i5uYY4e-gWlCblpqbEFxRl5iYWVcbDfGZMUAEAlz1ehQ</recordid><startdate>20191221</startdate><enddate>20191221</enddate><creator>Belcher, Lachlan T</creator><creator>Lewis, 3rd, Charlton D</creator><creator>Kedziora, Gary S</creator><creator>Weeks, David E</creator><scope>NPM</scope><orcidid>https://orcid.org/0000000222504125</orcidid><orcidid>https://orcid.org/0000000290741667</orcidid><orcidid>https://orcid.org/0000000321125921</orcidid><orcidid>https://orcid.org/0000000298012637</orcidid></search><sort><creationdate>20191221</creationdate><title>Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2</title><author>Belcher, Lachlan T ; Lewis, 3rd, Charlton D ; Kedziora, Gary S ; Weeks, David E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_318642713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belcher, Lachlan T</creatorcontrib><creatorcontrib>Lewis, 3rd, Charlton D</creatorcontrib><creatorcontrib>Kedziora, Gary S</creatorcontrib><creatorcontrib>Weeks, David E</creatorcontrib><collection>PubMed</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belcher, Lachlan T</au><au>Lewis, 3rd, Charlton D</au><au>Kedziora, Gary S</au><au>Weeks, David E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-12-21</date><risdate>2019</risdate><volume>151</volume><issue>23</issue><spage>234109</spage><pages>234109-</pages><eissn>1089-7690</eissn><abstract>A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin's 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner's analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented.</abstract><cop>United States</cop><pmid>31864271</pmid><doi>10.1063/1.5126801</doi><orcidid>https://orcid.org/0000000222504125</orcidid><orcidid>https://orcid.org/0000000290741667</orcidid><orcidid>https://orcid.org/0000000321125921</orcidid><orcidid>https://orcid.org/0000000298012637</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 1089-7690
ispartof The Journal of chemical physics, 2019-12, Vol.151 (23), p.234109
issn 1089-7690
language eng
recordid cdi_pubmed_primary_31864271
source AIP Journals Complete; Alma/SFX Local Collection
title Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20non-adiabatic%20derivative%20coupling%20terms%20for%20spin-orbit%20MRCI%20wavefunctions.%20II.%20Derivative%20coupling%20terms%20and%20coupling%20angle%20for%20KHeA%202%20%CE%A0%201/2%20%E2%87%94KHeB%202%20%CE%A3%201/2&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Belcher,%20Lachlan%20T&rft.date=2019-12-21&rft.volume=151&rft.issue=23&rft.spage=234109&rft.pages=234109-&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.5126801&rft_dat=%3Cpubmed%3E31864271%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31864271&rfr_iscdi=true