Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2
A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-12, Vol.151 (23), p.234109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 234109 |
container_title | The Journal of chemical physics |
container_volume | 151 |
creator | Belcher, Lachlan T Lewis, 3rd, Charlton D Kedziora, Gary S Weeks, David E |
description | A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin's 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner's analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented. |
doi_str_mv | 10.1063/1.5126801 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_31864271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31864271</sourcerecordid><originalsourceid>FETCH-pubmed_primary_318642713</originalsourceid><addsrcrecordid>eNpjYBA0NNAzNDAz1jfUMzU0MrMwMGRi4DQ0sLDUNTezNOBg4CouzjIwMDA0NzJhZ-AwNrQwMzEyN-RkWO6Yl5hTWZKZrJCXn6ebmJKZmJQI4qWkFmWWAVllqQrJ-aUFOZl56QolqUW5xQpp-UUKxQWZebr5RUmZJQq-Qc6eCuWJZalppXnJJZn5ecV6Cp6eegouOA1IzEtBCCXmpeekgs309kh1VDBSOLdAwVDfSOFR-xSggBNIYDFIgIeBNS0xpziVF0pzM8i5uYY4e-gWlCblpqbEFxRl5iYWVcbDfGZMUAEAlz1ehQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Belcher, Lachlan T ; Lewis, 3rd, Charlton D ; Kedziora, Gary S ; Weeks, David E</creator><creatorcontrib>Belcher, Lachlan T ; Lewis, 3rd, Charlton D ; Kedziora, Gary S ; Weeks, David E</creatorcontrib><description>A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin's 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner's analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented.</description><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5126801</identifier><identifier>PMID: 31864271</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2019-12, Vol.151 (23), p.234109</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000222504125 ; 0000000290741667 ; 0000000321125921 ; 0000000298012637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31864271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belcher, Lachlan T</creatorcontrib><creatorcontrib>Lewis, 3rd, Charlton D</creatorcontrib><creatorcontrib>Kedziora, Gary S</creatorcontrib><creatorcontrib>Weeks, David E</creatorcontrib><title>Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin's 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner's analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented.</description><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpjYBA0NNAzNDAz1jfUMzU0MrMwMGRi4DQ0sLDUNTezNOBg4CouzjIwMDA0NzJhZ-AwNrQwMzEyN-RkWO6Yl5hTWZKZrJCXn6ebmJKZmJQI4qWkFmWWAVllqQrJ-aUFOZl56QolqUW5xQpp-UUKxQWZebr5RUmZJQq-Qc6eCuWJZalppXnJJZn5ecV6Cp6eegouOA1IzEtBCCXmpeekgs309kh1VDBSOLdAwVDfSOFR-xSggBNIYDFIgIeBNS0xpziVF0pzM8i5uYY4e-gWlCblpqbEFxRl5iYWVcbDfGZMUAEAlz1ehQ</recordid><startdate>20191221</startdate><enddate>20191221</enddate><creator>Belcher, Lachlan T</creator><creator>Lewis, 3rd, Charlton D</creator><creator>Kedziora, Gary S</creator><creator>Weeks, David E</creator><scope>NPM</scope><orcidid>https://orcid.org/0000000222504125</orcidid><orcidid>https://orcid.org/0000000290741667</orcidid><orcidid>https://orcid.org/0000000321125921</orcidid><orcidid>https://orcid.org/0000000298012637</orcidid></search><sort><creationdate>20191221</creationdate><title>Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2</title><author>Belcher, Lachlan T ; Lewis, 3rd, Charlton D ; Kedziora, Gary S ; Weeks, David E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_318642713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belcher, Lachlan T</creatorcontrib><creatorcontrib>Lewis, 3rd, Charlton D</creatorcontrib><creatorcontrib>Kedziora, Gary S</creatorcontrib><creatorcontrib>Weeks, David E</creatorcontrib><collection>PubMed</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belcher, Lachlan T</au><au>Lewis, 3rd, Charlton D</au><au>Kedziora, Gary S</au><au>Weeks, David E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-12-21</date><risdate>2019</risdate><volume>151</volume><issue>23</issue><spage>234109</spage><pages>234109-</pages><eissn>1089-7690</eissn><abstract>A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin's 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner's analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented.</abstract><cop>United States</cop><pmid>31864271</pmid><doi>10.1063/1.5126801</doi><orcidid>https://orcid.org/0000000222504125</orcidid><orcidid>https://orcid.org/0000000290741667</orcidid><orcidid>https://orcid.org/0000000321125921</orcidid><orcidid>https://orcid.org/0000000298012637</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1089-7690 |
ispartof | The Journal of chemical physics, 2019-12, Vol.151 (23), p.234109 |
issn | 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_31864271 |
source | AIP Journals Complete; Alma/SFX Local Collection |
title | Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA 2 Π 1/2 ⇔KHeB 2 Σ 1/2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20non-adiabatic%20derivative%20coupling%20terms%20for%20spin-orbit%20MRCI%20wavefunctions.%20II.%20Derivative%20coupling%20terms%20and%20coupling%20angle%20for%20KHeA%202%20%CE%A0%201/2%20%E2%87%94KHeB%202%20%CE%A3%201/2&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Belcher,%20Lachlan%20T&rft.date=2019-12-21&rft.volume=151&rft.issue=23&rft.spage=234109&rft.pages=234109-&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.5126801&rft_dat=%3Cpubmed%3E31864271%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31864271&rfr_iscdi=true |