Cryoablation: physical and molecular basis with putative immunological consequences
Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative muta...
Gespeichert in:
Veröffentlicht in: | International journal of hyperthermia 2019-11, Vol.36 (sup1), p.10-16 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | sup1 |
container_start_page | 10 |
container_title | International journal of hyperthermia |
container_volume | 36 |
creator | Baust, John G. Snyder, Kristi K. Santucci, Kimberly L. Robilotto, Anthony T. Van Buskirk, Robert G. Baust, John M. |
description | Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative mutagenesis as do many repetitive therapies. CA is characterized by the launch of multiple forms of cell death including (a) ice-related physical damage, (b) initiation of cellular stress responses (kill switch activation) and launch of necrosis and apoptosis, (c) vascular stasis, and (d) likely activation of ablative immune responses. CA is not without limitation related to the thermal gradient formed between cryoprobe surface (∼−185°C) and the distal surface of the freeze zone (∼0°C) requiring freeze margin extension beyond the tumor boundary (up to ∼1 cm). This limitation is mitigated in part by commonly applied dual freeze thaw cycles and the use of freeze sensitizing adjuvants. This review will (1) identify the cascade of damaging effects of the freeze-thaw process, its physical and molecular-based relationships, (2) a likely immunological involvement (abscopic effect), and (3) explore the use of freeze-sensitizing adjuvants necessary to limit freezing beyond the tumor margin. |
doi_str_mv | 10.1080/02656736.2019.1647355 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_doaj_</sourceid><recordid>TN_cdi_pubmed_primary_31795837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a2f55ab4311d404ba4477e45a67500ed</doaj_id><sourcerecordid>31795837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-324f0351192e5ae0c9ba21e3162fa6af813894a83a729151a2544a5f11bf7f513</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCTwDlD2Tr8UeccECgFR-VKnEAztbEsXddOfZiJ63235PtthW9cBpp5nmfObyEvAO6BtrSS8oa2SjerBmFbg2NUFzKF2QFohG1BKlektWRqY_QGTkv5YZSKiRTr8kZB9XJlqsV-bnJh4R9wMmn-KHa7w7FGwwVxqEaU7BmDpirHosv1Z2fdtV-nhb21lZ-HOeYQtre8ybFYv_MNhpb3pBXDkOxbx_mBfn99cuvzff6-se3q83n69pILqaaM-EolwAdsxItNV2PDCyHhjls0LXA205gy1GxDiQgk0KgdAC9U04CvyBXJ--Q8Ebvsx8xH3RCr-8XKW815smbYDUyJyX2ggMMgooehVDKComNkpTaYXF9PLn2cz_awdg4ZQzPpM8v0e_0Nt3qpu3UYl0E8iQwOZWSrXvKAtXHxvRjY_rYmH5obMm9__fxU-qxogX4dAJ8dCmPeJdyGPSEh5CyyxiNLwv83x9_ATeGpvg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cryoablation: physical and molecular basis with putative immunological consequences</title><source>Taylor & Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><creator>Baust, John G. ; Snyder, Kristi K. ; Santucci, Kimberly L. ; Robilotto, Anthony T. ; Van Buskirk, Robert G. ; Baust, John M.</creator><creatorcontrib>Baust, John G. ; Snyder, Kristi K. ; Santucci, Kimberly L. ; Robilotto, Anthony T. ; Van Buskirk, Robert G. ; Baust, John M.</creatorcontrib><description>Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative mutagenesis as do many repetitive therapies. CA is characterized by the launch of multiple forms of cell death including (a) ice-related physical damage, (b) initiation of cellular stress responses (kill switch activation) and launch of necrosis and apoptosis, (c) vascular stasis, and (d) likely activation of ablative immune responses. CA is not without limitation related to the thermal gradient formed between cryoprobe surface (∼−185°C) and the distal surface of the freeze zone (∼0°C) requiring freeze margin extension beyond the tumor boundary (up to ∼1 cm). This limitation is mitigated in part by commonly applied dual freeze thaw cycles and the use of freeze sensitizing adjuvants. This review will (1) identify the cascade of damaging effects of the freeze-thaw process, its physical and molecular-based relationships, (2) a likely immunological involvement (abscopic effect), and (3) explore the use of freeze-sensitizing adjuvants necessary to limit freezing beyond the tumor margin.</description><identifier>ISSN: 0265-6736</identifier><identifier>EISSN: 1464-5157</identifier><identifier>DOI: 10.1080/02656736.2019.1647355</identifier><identifier>PMID: 31795837</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>adjuvants ; cancer ; cryo-immunology ; Cryoablation ; Cryosurgery - methods ; cryotherapy ; freezing ; Humans ; thermal therapy</subject><ispartof>International journal of hyperthermia, 2019-11, Vol.36 (sup1), p.10-16</ispartof><rights>2019 The Author(s). Published with license by Taylor & Francis Group, LLC 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-324f0351192e5ae0c9ba21e3162fa6af813894a83a729151a2544a5f11bf7f513</citedby><cites>FETCH-LOGICAL-c534t-324f0351192e5ae0c9ba21e3162fa6af813894a83a729151a2544a5f11bf7f513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02656736.2019.1647355$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02656736.2019.1647355$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2102,27502,27924,27925,59143,59144</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31795837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baust, John G.</creatorcontrib><creatorcontrib>Snyder, Kristi K.</creatorcontrib><creatorcontrib>Santucci, Kimberly L.</creatorcontrib><creatorcontrib>Robilotto, Anthony T.</creatorcontrib><creatorcontrib>Van Buskirk, Robert G.</creatorcontrib><creatorcontrib>Baust, John M.</creatorcontrib><title>Cryoablation: physical and molecular basis with putative immunological consequences</title><title>International journal of hyperthermia</title><addtitle>Int J Hyperthermia</addtitle><description>Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative mutagenesis as do many repetitive therapies. CA is characterized by the launch of multiple forms of cell death including (a) ice-related physical damage, (b) initiation of cellular stress responses (kill switch activation) and launch of necrosis and apoptosis, (c) vascular stasis, and (d) likely activation of ablative immune responses. CA is not without limitation related to the thermal gradient formed between cryoprobe surface (∼−185°C) and the distal surface of the freeze zone (∼0°C) requiring freeze margin extension beyond the tumor boundary (up to ∼1 cm). This limitation is mitigated in part by commonly applied dual freeze thaw cycles and the use of freeze sensitizing adjuvants. This review will (1) identify the cascade of damaging effects of the freeze-thaw process, its physical and molecular-based relationships, (2) a likely immunological involvement (abscopic effect), and (3) explore the use of freeze-sensitizing adjuvants necessary to limit freezing beyond the tumor margin.</description><subject>adjuvants</subject><subject>cancer</subject><subject>cryo-immunology</subject><subject>Cryoablation</subject><subject>Cryosurgery - methods</subject><subject>cryotherapy</subject><subject>freezing</subject><subject>Humans</subject><subject>thermal therapy</subject><issn>0265-6736</issn><issn>1464-5157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EotvCTwDlD2Tr8UeccECgFR-VKnEAztbEsXddOfZiJ63235PtthW9cBpp5nmfObyEvAO6BtrSS8oa2SjerBmFbg2NUFzKF2QFohG1BKlektWRqY_QGTkv5YZSKiRTr8kZB9XJlqsV-bnJh4R9wMmn-KHa7w7FGwwVxqEaU7BmDpirHosv1Z2fdtV-nhb21lZ-HOeYQtre8ybFYv_MNhpb3pBXDkOxbx_mBfn99cuvzff6-se3q83n69pILqaaM-EolwAdsxItNV2PDCyHhjls0LXA205gy1GxDiQgk0KgdAC9U04CvyBXJ--Q8Ebvsx8xH3RCr-8XKW815smbYDUyJyX2ggMMgooehVDKComNkpTaYXF9PLn2cz_awdg4ZQzPpM8v0e_0Nt3qpu3UYl0E8iQwOZWSrXvKAtXHxvRjY_rYmH5obMm9__fxU-qxogX4dAJ8dCmPeJdyGPSEh5CyyxiNLwv83x9_ATeGpvg</recordid><startdate>20191129</startdate><enddate>20191129</enddate><creator>Baust, John G.</creator><creator>Snyder, Kristi K.</creator><creator>Santucci, Kimberly L.</creator><creator>Robilotto, Anthony T.</creator><creator>Van Buskirk, Robert G.</creator><creator>Baust, John M.</creator><general>Taylor & Francis</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20191129</creationdate><title>Cryoablation: physical and molecular basis with putative immunological consequences</title><author>Baust, John G. ; Snyder, Kristi K. ; Santucci, Kimberly L. ; Robilotto, Anthony T. ; Van Buskirk, Robert G. ; Baust, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-324f0351192e5ae0c9ba21e3162fa6af813894a83a729151a2544a5f11bf7f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adjuvants</topic><topic>cancer</topic><topic>cryo-immunology</topic><topic>Cryoablation</topic><topic>Cryosurgery - methods</topic><topic>cryotherapy</topic><topic>freezing</topic><topic>Humans</topic><topic>thermal therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baust, John G.</creatorcontrib><creatorcontrib>Snyder, Kristi K.</creatorcontrib><creatorcontrib>Santucci, Kimberly L.</creatorcontrib><creatorcontrib>Robilotto, Anthony T.</creatorcontrib><creatorcontrib>Van Buskirk, Robert G.</creatorcontrib><creatorcontrib>Baust, John M.</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of hyperthermia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baust, John G.</au><au>Snyder, Kristi K.</au><au>Santucci, Kimberly L.</au><au>Robilotto, Anthony T.</au><au>Van Buskirk, Robert G.</au><au>Baust, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryoablation: physical and molecular basis with putative immunological consequences</atitle><jtitle>International journal of hyperthermia</jtitle><addtitle>Int J Hyperthermia</addtitle><date>2019-11-29</date><risdate>2019</risdate><volume>36</volume><issue>sup1</issue><spage>10</spage><epage>16</epage><pages>10-16</pages><issn>0265-6736</issn><eissn>1464-5157</eissn><abstract>Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative mutagenesis as do many repetitive therapies. CA is characterized by the launch of multiple forms of cell death including (a) ice-related physical damage, (b) initiation of cellular stress responses (kill switch activation) and launch of necrosis and apoptosis, (c) vascular stasis, and (d) likely activation of ablative immune responses. CA is not without limitation related to the thermal gradient formed between cryoprobe surface (∼−185°C) and the distal surface of the freeze zone (∼0°C) requiring freeze margin extension beyond the tumor boundary (up to ∼1 cm). This limitation is mitigated in part by commonly applied dual freeze thaw cycles and the use of freeze sensitizing adjuvants. This review will (1) identify the cascade of damaging effects of the freeze-thaw process, its physical and molecular-based relationships, (2) a likely immunological involvement (abscopic effect), and (3) explore the use of freeze-sensitizing adjuvants necessary to limit freezing beyond the tumor margin.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>31795837</pmid><doi>10.1080/02656736.2019.1647355</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-6736 |
ispartof | International journal of hyperthermia, 2019-11, Vol.36 (sup1), p.10-16 |
issn | 0265-6736 1464-5157 |
language | eng |
recordid | cdi_pubmed_primary_31795837 |
source | Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals |
subjects | adjuvants cancer cryo-immunology Cryoablation Cryosurgery - methods cryotherapy freezing Humans thermal therapy |
title | Cryoablation: physical and molecular basis with putative immunological consequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryoablation:%20physical%20and%20molecular%20basis%20with%20putative%20immunological%20consequences&rft.jtitle=International%20journal%20of%20hyperthermia&rft.au=Baust,%20John%20G.&rft.date=2019-11-29&rft.volume=36&rft.issue=sup1&rft.spage=10&rft.epage=16&rft.pages=10-16&rft.issn=0265-6736&rft.eissn=1464-5157&rft_id=info:doi/10.1080/02656736.2019.1647355&rft_dat=%3Cpubmed_doaj_%3E31795837%3C/pubmed_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31795837&rft_doaj_id=oai_doaj_org_article_a2f55ab4311d404ba4477e45a67500ed&rfr_iscdi=true |