Cryoablation: physical and molecular basis with putative immunological consequences

Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative muta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hyperthermia 2019-11, Vol.36 (sup1), p.10-16
Hauptverfasser: Baust, John G., Snyder, Kristi K., Santucci, Kimberly L., Robilotto, Anthony T., Van Buskirk, Robert G., Baust, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue sup1
container_start_page 10
container_title International journal of hyperthermia
container_volume 36
creator Baust, John G.
Snyder, Kristi K.
Santucci, Kimberly L.
Robilotto, Anthony T.
Van Buskirk, Robert G.
Baust, John M.
description Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative mutagenesis as do many repetitive therapies. CA is characterized by the launch of multiple forms of cell death including (a) ice-related physical damage, (b) initiation of cellular stress responses (kill switch activation) and launch of necrosis and apoptosis, (c) vascular stasis, and (d) likely activation of ablative immune responses. CA is not without limitation related to the thermal gradient formed between cryoprobe surface (∼−185°C) and the distal surface of the freeze zone (∼0°C) requiring freeze margin extension beyond the tumor boundary (up to ∼1 cm). This limitation is mitigated in part by commonly applied dual freeze thaw cycles and the use of freeze sensitizing adjuvants. This review will (1) identify the cascade of damaging effects of the freeze-thaw process, its physical and molecular-based relationships, (2) a likely immunological involvement (abscopic effect), and (3) explore the use of freeze-sensitizing adjuvants necessary to limit freezing beyond the tumor margin.
doi_str_mv 10.1080/02656736.2019.1647355
format Article
fullrecord <record><control><sourceid>pubmed_doaj_</sourceid><recordid>TN_cdi_pubmed_primary_31795837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a2f55ab4311d404ba4477e45a67500ed</doaj_id><sourcerecordid>31795837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-324f0351192e5ae0c9ba21e3162fa6af813894a83a729151a2544a5f11bf7f513</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCTwDlD2Tr8UeccECgFR-VKnEAztbEsXddOfZiJ63235PtthW9cBpp5nmfObyEvAO6BtrSS8oa2SjerBmFbg2NUFzKF2QFohG1BKlektWRqY_QGTkv5YZSKiRTr8kZB9XJlqsV-bnJh4R9wMmn-KHa7w7FGwwVxqEaU7BmDpirHosv1Z2fdtV-nhb21lZ-HOeYQtre8ybFYv_MNhpb3pBXDkOxbx_mBfn99cuvzff6-se3q83n69pILqaaM-EolwAdsxItNV2PDCyHhjls0LXA205gy1GxDiQgk0KgdAC9U04CvyBXJ--Q8Ebvsx8xH3RCr-8XKW815smbYDUyJyX2ggMMgooehVDKComNkpTaYXF9PLn2cz_awdg4ZQzPpM8v0e_0Nt3qpu3UYl0E8iQwOZWSrXvKAtXHxvRjY_rYmH5obMm9__fxU-qxogX4dAJ8dCmPeJdyGPSEh5CyyxiNLwv83x9_ATeGpvg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cryoablation: physical and molecular basis with putative immunological consequences</title><source>Taylor &amp; Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><creator>Baust, John G. ; Snyder, Kristi K. ; Santucci, Kimberly L. ; Robilotto, Anthony T. ; Van Buskirk, Robert G. ; Baust, John M.</creator><creatorcontrib>Baust, John G. ; Snyder, Kristi K. ; Santucci, Kimberly L. ; Robilotto, Anthony T. ; Van Buskirk, Robert G. ; Baust, John M.</creatorcontrib><description>Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative mutagenesis as do many repetitive therapies. CA is characterized by the launch of multiple forms of cell death including (a) ice-related physical damage, (b) initiation of cellular stress responses (kill switch activation) and launch of necrosis and apoptosis, (c) vascular stasis, and (d) likely activation of ablative immune responses. CA is not without limitation related to the thermal gradient formed between cryoprobe surface (∼−185°C) and the distal surface of the freeze zone (∼0°C) requiring freeze margin extension beyond the tumor boundary (up to ∼1 cm). This limitation is mitigated in part by commonly applied dual freeze thaw cycles and the use of freeze sensitizing adjuvants. This review will (1) identify the cascade of damaging effects of the freeze-thaw process, its physical and molecular-based relationships, (2) a likely immunological involvement (abscopic effect), and (3) explore the use of freeze-sensitizing adjuvants necessary to limit freezing beyond the tumor margin.</description><identifier>ISSN: 0265-6736</identifier><identifier>EISSN: 1464-5157</identifier><identifier>DOI: 10.1080/02656736.2019.1647355</identifier><identifier>PMID: 31795837</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>adjuvants ; cancer ; cryo-immunology ; Cryoablation ; Cryosurgery - methods ; cryotherapy ; freezing ; Humans ; thermal therapy</subject><ispartof>International journal of hyperthermia, 2019-11, Vol.36 (sup1), p.10-16</ispartof><rights>2019 The Author(s). Published with license by Taylor &amp; Francis Group, LLC 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-324f0351192e5ae0c9ba21e3162fa6af813894a83a729151a2544a5f11bf7f513</citedby><cites>FETCH-LOGICAL-c534t-324f0351192e5ae0c9ba21e3162fa6af813894a83a729151a2544a5f11bf7f513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02656736.2019.1647355$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02656736.2019.1647355$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2102,27502,27924,27925,59143,59144</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31795837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baust, John G.</creatorcontrib><creatorcontrib>Snyder, Kristi K.</creatorcontrib><creatorcontrib>Santucci, Kimberly L.</creatorcontrib><creatorcontrib>Robilotto, Anthony T.</creatorcontrib><creatorcontrib>Van Buskirk, Robert G.</creatorcontrib><creatorcontrib>Baust, John M.</creatorcontrib><title>Cryoablation: physical and molecular basis with putative immunological consequences</title><title>International journal of hyperthermia</title><addtitle>Int J Hyperthermia</addtitle><description>Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative mutagenesis as do many repetitive therapies. CA is characterized by the launch of multiple forms of cell death including (a) ice-related physical damage, (b) initiation of cellular stress responses (kill switch activation) and launch of necrosis and apoptosis, (c) vascular stasis, and (d) likely activation of ablative immune responses. CA is not without limitation related to the thermal gradient formed between cryoprobe surface (∼−185°C) and the distal surface of the freeze zone (∼0°C) requiring freeze margin extension beyond the tumor boundary (up to ∼1 cm). This limitation is mitigated in part by commonly applied dual freeze thaw cycles and the use of freeze sensitizing adjuvants. This review will (1) identify the cascade of damaging effects of the freeze-thaw process, its physical and molecular-based relationships, (2) a likely immunological involvement (abscopic effect), and (3) explore the use of freeze-sensitizing adjuvants necessary to limit freezing beyond the tumor margin.</description><subject>adjuvants</subject><subject>cancer</subject><subject>cryo-immunology</subject><subject>Cryoablation</subject><subject>Cryosurgery - methods</subject><subject>cryotherapy</subject><subject>freezing</subject><subject>Humans</subject><subject>thermal therapy</subject><issn>0265-6736</issn><issn>1464-5157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EotvCTwDlD2Tr8UeccECgFR-VKnEAztbEsXddOfZiJ63235PtthW9cBpp5nmfObyEvAO6BtrSS8oa2SjerBmFbg2NUFzKF2QFohG1BKlektWRqY_QGTkv5YZSKiRTr8kZB9XJlqsV-bnJh4R9wMmn-KHa7w7FGwwVxqEaU7BmDpirHosv1Z2fdtV-nhb21lZ-HOeYQtre8ybFYv_MNhpb3pBXDkOxbx_mBfn99cuvzff6-se3q83n69pILqaaM-EolwAdsxItNV2PDCyHhjls0LXA205gy1GxDiQgk0KgdAC9U04CvyBXJ--Q8Ebvsx8xH3RCr-8XKW815smbYDUyJyX2ggMMgooehVDKComNkpTaYXF9PLn2cz_awdg4ZQzPpM8v0e_0Nt3qpu3UYl0E8iQwOZWSrXvKAtXHxvRjY_rYmH5obMm9__fxU-qxogX4dAJ8dCmPeJdyGPSEh5CyyxiNLwv83x9_ATeGpvg</recordid><startdate>20191129</startdate><enddate>20191129</enddate><creator>Baust, John G.</creator><creator>Snyder, Kristi K.</creator><creator>Santucci, Kimberly L.</creator><creator>Robilotto, Anthony T.</creator><creator>Van Buskirk, Robert G.</creator><creator>Baust, John M.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20191129</creationdate><title>Cryoablation: physical and molecular basis with putative immunological consequences</title><author>Baust, John G. ; Snyder, Kristi K. ; Santucci, Kimberly L. ; Robilotto, Anthony T. ; Van Buskirk, Robert G. ; Baust, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-324f0351192e5ae0c9ba21e3162fa6af813894a83a729151a2544a5f11bf7f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adjuvants</topic><topic>cancer</topic><topic>cryo-immunology</topic><topic>Cryoablation</topic><topic>Cryosurgery - methods</topic><topic>cryotherapy</topic><topic>freezing</topic><topic>Humans</topic><topic>thermal therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baust, John G.</creatorcontrib><creatorcontrib>Snyder, Kristi K.</creatorcontrib><creatorcontrib>Santucci, Kimberly L.</creatorcontrib><creatorcontrib>Robilotto, Anthony T.</creatorcontrib><creatorcontrib>Van Buskirk, Robert G.</creatorcontrib><creatorcontrib>Baust, John M.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of hyperthermia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baust, John G.</au><au>Snyder, Kristi K.</au><au>Santucci, Kimberly L.</au><au>Robilotto, Anthony T.</au><au>Van Buskirk, Robert G.</au><au>Baust, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryoablation: physical and molecular basis with putative immunological consequences</atitle><jtitle>International journal of hyperthermia</jtitle><addtitle>Int J Hyperthermia</addtitle><date>2019-11-29</date><risdate>2019</risdate><volume>36</volume><issue>sup1</issue><spage>10</spage><epage>16</epage><pages>10-16</pages><issn>0265-6736</issn><eissn>1464-5157</eissn><abstract>Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative mutagenesis as do many repetitive therapies. CA is characterized by the launch of multiple forms of cell death including (a) ice-related physical damage, (b) initiation of cellular stress responses (kill switch activation) and launch of necrosis and apoptosis, (c) vascular stasis, and (d) likely activation of ablative immune responses. CA is not without limitation related to the thermal gradient formed between cryoprobe surface (∼−185°C) and the distal surface of the freeze zone (∼0°C) requiring freeze margin extension beyond the tumor boundary (up to ∼1 cm). This limitation is mitigated in part by commonly applied dual freeze thaw cycles and the use of freeze sensitizing adjuvants. This review will (1) identify the cascade of damaging effects of the freeze-thaw process, its physical and molecular-based relationships, (2) a likely immunological involvement (abscopic effect), and (3) explore the use of freeze-sensitizing adjuvants necessary to limit freezing beyond the tumor margin.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>31795837</pmid><doi>10.1080/02656736.2019.1647355</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0265-6736
ispartof International journal of hyperthermia, 2019-11, Vol.36 (sup1), p.10-16
issn 0265-6736
1464-5157
language eng
recordid cdi_pubmed_primary_31795837
source Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals
subjects adjuvants
cancer
cryo-immunology
Cryoablation
Cryosurgery - methods
cryotherapy
freezing
Humans
thermal therapy
title Cryoablation: physical and molecular basis with putative immunological consequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryoablation:%20physical%20and%20molecular%20basis%20with%20putative%20immunological%20consequences&rft.jtitle=International%20journal%20of%20hyperthermia&rft.au=Baust,%20John%20G.&rft.date=2019-11-29&rft.volume=36&rft.issue=sup1&rft.spage=10&rft.epage=16&rft.pages=10-16&rft.issn=0265-6736&rft.eissn=1464-5157&rft_id=info:doi/10.1080/02656736.2019.1647355&rft_dat=%3Cpubmed_doaj_%3E31795837%3C/pubmed_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31795837&rft_doaj_id=oai_doaj_org_article_a2f55ab4311d404ba4477e45a67500ed&rfr_iscdi=true