Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry

The knowledge of ligand–protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand–pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-01, Vol.92 (1), p.947-956
Hauptverfasser: Lu, Gaoyuan, Xu, Xiaowei, Li, Gongyu, Sun, Huiyong, Wang, Nian, Zhu, Yinxue, Wan, Ning, Shi, Yatao, Wang, Guangji, Li, Lingjun, Hao, Haiping, Ye, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 956
container_issue 1
container_start_page 947
container_title Analytical chemistry (Washington)
container_volume 92
creator Lu, Gaoyuan
Xu, Xiaowei
Li, Gongyu
Sun, Huiyong
Wang, Nian
Zhu, Yinxue
Wan, Ning
Shi, Yatao
Wang, Guangji
Li, Lingjun
Hao, Haiping
Ye, Hui
description The knowledge of ligand–protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand–protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand–protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)–MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-β segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a “real-world” application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM–MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development.
doi_str_mv 10.1021/acs.analchem.9b03827
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31769969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335663732</sourcerecordid><originalsourceid>FETCH-LOGICAL-a422t-cb0658091397cfa8bfd4049088a34a5e24335c3dc975ae1ed1b109fb624b57aa3</originalsourceid><addsrcrecordid>eNqNkc1uEzEURi0EoqHwBghZYokmXNvz5yUatTRSKqoW1iPbc6e4Suxge4SyQOIdeMM-CR4lzRKx8l2c79P1uYS8ZbBkwNlHZeJSObUx33G7lBpEy5tnZMEqDkXdtvw5WQCAKHgDcEZexfgAwBiw-iU5E6yppazlgvy6m3TAaIcJi1uMfjMl6x299D7tgnXJunvqR7q298oNj7__3ASf0Dq6cgmDMjMcqd7TTgWNDmmXt7ExhT3NPF3lqmuv7camfQ5fqxjp3Q5NCn6LGXpNXoxqE_HN8T0n3y4vvnZXxfrL51X3aV2okvNUGA111YJkQjZmVK0ehxJKCW2rRKkq5KUQlRGDkU2lkOHANAM56pqXumqUEufk_aF3F_yPCWPqH_wUsrzY8xyta9EInqnyQJngYww49lnBVoV9z6CfnffZef_kvD86z7F3x_JJb3E4hZ4kZ-DDAfiJ2o_RWHQGT1g-UgV1w2SZp3aua_-f7mxS8w06P7mUo3CIznuefvjP5f8CISK1zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335663732</pqid></control><display><type>article</type><title>Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>American Chemical Society Journals</source><creator>Lu, Gaoyuan ; Xu, Xiaowei ; Li, Gongyu ; Sun, Huiyong ; Wang, Nian ; Zhu, Yinxue ; Wan, Ning ; Shi, Yatao ; Wang, Guangji ; Li, Lingjun ; Hao, Haiping ; Ye, Hui</creator><creatorcontrib>Lu, Gaoyuan ; Xu, Xiaowei ; Li, Gongyu ; Sun, Huiyong ; Wang, Nian ; Zhu, Yinxue ; Wan, Ning ; Shi, Yatao ; Wang, Guangji ; Li, Lingjun ; Hao, Haiping ; Ye, Hui</creatorcontrib><description>The knowledge of ligand–protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand–protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand–protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)–MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-β segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a “real-world” application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM–MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b03827</identifier><identifier>PMID: 31769969</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - metabolism ; Analytical chemistry ; Animals ; Binding ; Binding Sites ; Biological activity ; Chemistry ; Chemistry, Analytical ; Chickens ; Crystallography ; Drug development ; ERRalpha Estrogen-Related Receptor ; Estrogens ; Footprinting ; Humans ; Ion Mobility Spectrometry - methods ; Ionic mobility ; Isomers ; Labels ; Ligands ; Lysozyme ; Mass spectrometry ; Mass Spectrometry - methods ; Mass spectroscopy ; Metabolic disorders ; Methane - analogs &amp; derivatives ; Methane - chemistry ; Mobility ; Muramidase - chemistry ; Muramidase - metabolism ; Organic chemistry ; Physical Sciences ; Protein Binding ; Protein interaction ; Proteins ; Receptors, Estrogen - chemistry ; Receptors, Estrogen - metabolism ; Science &amp; Technology ; Scientific imaging ; Separation ; Spectroscopy ; Therapeutic targets ; Workflow</subject><ispartof>Analytical chemistry (Washington), 2020-01, Vol.92 (1), p.947-956</ispartof><rights>Copyright American Chemical Society Jan 7, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000506719400087</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a422t-cb0658091397cfa8bfd4049088a34a5e24335c3dc975ae1ed1b109fb624b57aa3</citedby><cites>FETCH-LOGICAL-a422t-cb0658091397cfa8bfd4049088a34a5e24335c3dc975ae1ed1b109fb624b57aa3</cites><orcidid>0000-0002-2367-4433 ; 0000-0003-1886-2728 ; 0000-0002-7416-1558 ; 0000-0002-5142-1134 ; 0000-0003-0056-3869 ; 0000-0002-8297-1921 ; 0000-0001-7955-9541 ; 0000-0002-7107-7481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b03827$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b03827$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,28255,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31769969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Gaoyuan</creatorcontrib><creatorcontrib>Xu, Xiaowei</creatorcontrib><creatorcontrib>Li, Gongyu</creatorcontrib><creatorcontrib>Sun, Huiyong</creatorcontrib><creatorcontrib>Wang, Nian</creatorcontrib><creatorcontrib>Zhu, Yinxue</creatorcontrib><creatorcontrib>Wan, Ning</creatorcontrib><creatorcontrib>Shi, Yatao</creatorcontrib><creatorcontrib>Wang, Guangji</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Hao, Haiping</creatorcontrib><creatorcontrib>Ye, Hui</creatorcontrib><title>Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry</title><title>Analytical chemistry (Washington)</title><addtitle>ANAL CHEM</addtitle><addtitle>Anal. Chem</addtitle><description>The knowledge of ligand–protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand–protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand–protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)–MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-β segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a “real-world” application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM–MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development.</description><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Analytical chemistry</subject><subject>Animals</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biological activity</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Chickens</subject><subject>Crystallography</subject><subject>Drug development</subject><subject>ERRalpha Estrogen-Related Receptor</subject><subject>Estrogens</subject><subject>Footprinting</subject><subject>Humans</subject><subject>Ion Mobility Spectrometry - methods</subject><subject>Ionic mobility</subject><subject>Isomers</subject><subject>Labels</subject><subject>Ligands</subject><subject>Lysozyme</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Metabolic disorders</subject><subject>Methane - analogs &amp; derivatives</subject><subject>Methane - chemistry</subject><subject>Mobility</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - metabolism</subject><subject>Organic chemistry</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Receptors, Estrogen - chemistry</subject><subject>Receptors, Estrogen - metabolism</subject><subject>Science &amp; Technology</subject><subject>Scientific imaging</subject><subject>Separation</subject><subject>Spectroscopy</subject><subject>Therapeutic targets</subject><subject>Workflow</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1uEzEURi0EoqHwBghZYokmXNvz5yUatTRSKqoW1iPbc6e4Suxge4SyQOIdeMM-CR4lzRKx8l2c79P1uYS8ZbBkwNlHZeJSObUx33G7lBpEy5tnZMEqDkXdtvw5WQCAKHgDcEZexfgAwBiw-iU5E6yppazlgvy6m3TAaIcJi1uMfjMl6x299D7tgnXJunvqR7q298oNj7__3ASf0Dq6cgmDMjMcqd7TTgWNDmmXt7ExhT3NPF3lqmuv7camfQ5fqxjp3Q5NCn6LGXpNXoxqE_HN8T0n3y4vvnZXxfrL51X3aV2okvNUGA111YJkQjZmVK0ehxJKCW2rRKkq5KUQlRGDkU2lkOHANAM56pqXumqUEufk_aF3F_yPCWPqH_wUsrzY8xyta9EInqnyQJngYww49lnBVoV9z6CfnffZef_kvD86z7F3x_JJb3E4hZ4kZ-DDAfiJ2o_RWHQGT1g-UgV1w2SZp3aua_-f7mxS8w06P7mUo3CIznuefvjP5f8CISK1zw</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Lu, Gaoyuan</creator><creator>Xu, Xiaowei</creator><creator>Li, Gongyu</creator><creator>Sun, Huiyong</creator><creator>Wang, Nian</creator><creator>Zhu, Yinxue</creator><creator>Wan, Ning</creator><creator>Shi, Yatao</creator><creator>Wang, Guangji</creator><creator>Li, Lingjun</creator><creator>Hao, Haiping</creator><creator>Ye, Hui</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-2367-4433</orcidid><orcidid>https://orcid.org/0000-0003-1886-2728</orcidid><orcidid>https://orcid.org/0000-0002-7416-1558</orcidid><orcidid>https://orcid.org/0000-0002-5142-1134</orcidid><orcidid>https://orcid.org/0000-0003-0056-3869</orcidid><orcidid>https://orcid.org/0000-0002-8297-1921</orcidid><orcidid>https://orcid.org/0000-0001-7955-9541</orcidid><orcidid>https://orcid.org/0000-0002-7107-7481</orcidid></search><sort><creationdate>20200107</creationdate><title>Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry</title><author>Lu, Gaoyuan ; Xu, Xiaowei ; Li, Gongyu ; Sun, Huiyong ; Wang, Nian ; Zhu, Yinxue ; Wan, Ning ; Shi, Yatao ; Wang, Guangji ; Li, Lingjun ; Hao, Haiping ; Ye, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a422t-cb0658091397cfa8bfd4049088a34a5e24335c3dc975ae1ed1b109fb624b57aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Analytical chemistry</topic><topic>Animals</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biological activity</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Chickens</topic><topic>Crystallography</topic><topic>Drug development</topic><topic>ERRalpha Estrogen-Related Receptor</topic><topic>Estrogens</topic><topic>Footprinting</topic><topic>Humans</topic><topic>Ion Mobility Spectrometry - methods</topic><topic>Ionic mobility</topic><topic>Isomers</topic><topic>Labels</topic><topic>Ligands</topic><topic>Lysozyme</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Metabolic disorders</topic><topic>Methane - analogs &amp; derivatives</topic><topic>Methane - chemistry</topic><topic>Mobility</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - metabolism</topic><topic>Organic chemistry</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Receptors, Estrogen - chemistry</topic><topic>Receptors, Estrogen - metabolism</topic><topic>Science &amp; Technology</topic><topic>Scientific imaging</topic><topic>Separation</topic><topic>Spectroscopy</topic><topic>Therapeutic targets</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Gaoyuan</creatorcontrib><creatorcontrib>Xu, Xiaowei</creatorcontrib><creatorcontrib>Li, Gongyu</creatorcontrib><creatorcontrib>Sun, Huiyong</creatorcontrib><creatorcontrib>Wang, Nian</creatorcontrib><creatorcontrib>Zhu, Yinxue</creatorcontrib><creatorcontrib>Wan, Ning</creatorcontrib><creatorcontrib>Shi, Yatao</creatorcontrib><creatorcontrib>Wang, Guangji</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Hao, Haiping</creatorcontrib><creatorcontrib>Ye, Hui</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Gaoyuan</au><au>Xu, Xiaowei</au><au>Li, Gongyu</au><au>Sun, Huiyong</au><au>Wang, Nian</au><au>Zhu, Yinxue</au><au>Wan, Ning</au><au>Shi, Yatao</au><au>Wang, Guangji</au><au>Li, Lingjun</au><au>Hao, Haiping</au><au>Ye, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><stitle>ANAL CHEM</stitle><addtitle>Anal. Chem</addtitle><date>2020-01-07</date><risdate>2020</risdate><volume>92</volume><issue>1</issue><spage>947</spage><epage>956</epage><pages>947-956</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The knowledge of ligand–protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand–protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand–protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)–MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-β segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a “real-world” application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM–MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>31769969</pmid><doi>10.1021/acs.analchem.9b03827</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2367-4433</orcidid><orcidid>https://orcid.org/0000-0003-1886-2728</orcidid><orcidid>https://orcid.org/0000-0002-7416-1558</orcidid><orcidid>https://orcid.org/0000-0002-5142-1134</orcidid><orcidid>https://orcid.org/0000-0003-0056-3869</orcidid><orcidid>https://orcid.org/0000-0002-8297-1921</orcidid><orcidid>https://orcid.org/0000-0001-7955-9541</orcidid><orcidid>https://orcid.org/0000-0002-7107-7481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-01, Vol.92 (1), p.947-956
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmed_primary_31769969
source MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals
subjects Amyloid beta-Peptides - chemistry
Amyloid beta-Peptides - metabolism
Analytical chemistry
Animals
Binding
Binding Sites
Biological activity
Chemistry
Chemistry, Analytical
Chickens
Crystallography
Drug development
ERRalpha Estrogen-Related Receptor
Estrogens
Footprinting
Humans
Ion Mobility Spectrometry - methods
Ionic mobility
Isomers
Labels
Ligands
Lysozyme
Mass spectrometry
Mass Spectrometry - methods
Mass spectroscopy
Metabolic disorders
Methane - analogs & derivatives
Methane - chemistry
Mobility
Muramidase - chemistry
Muramidase - metabolism
Organic chemistry
Physical Sciences
Protein Binding
Protein interaction
Proteins
Receptors, Estrogen - chemistry
Receptors, Estrogen - metabolism
Science & Technology
Scientific imaging
Separation
Spectroscopy
Therapeutic targets
Workflow
title Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T20%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subresidue-Resolution%20Footprinting%20of%20Ligand%E2%80%93Protein%20Interactions%20by%20Carbene%20Chemistry%20and%20Ion%20Mobility%E2%80%93Mass%20Spectrometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lu,%20Gaoyuan&rft.date=2020-01-07&rft.volume=92&rft.issue=1&rft.spage=947&rft.epage=956&rft.pages=947-956&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b03827&rft_dat=%3Cproquest_pubme%3E2335663732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335663732&rft_id=info:pmid/31769969&rfr_iscdi=true