Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry
The knowledge of ligand–protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand–pro...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-01, Vol.92 (1), p.947-956 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 956 |
---|---|
container_issue | 1 |
container_start_page | 947 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Lu, Gaoyuan Xu, Xiaowei Li, Gongyu Sun, Huiyong Wang, Nian Zhu, Yinxue Wan, Ning Shi, Yatao Wang, Guangji Li, Lingjun Hao, Haiping Ye, Hui |
description | The knowledge of ligand–protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand–protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand–protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)–MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-β segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a “real-world” application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM–MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development. |
doi_str_mv | 10.1021/acs.analchem.9b03827 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31769969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335663732</sourcerecordid><originalsourceid>FETCH-LOGICAL-a422t-cb0658091397cfa8bfd4049088a34a5e24335c3dc975ae1ed1b109fb624b57aa3</originalsourceid><addsrcrecordid>eNqNkc1uEzEURi0EoqHwBghZYokmXNvz5yUatTRSKqoW1iPbc6e4Suxge4SyQOIdeMM-CR4lzRKx8l2c79P1uYS8ZbBkwNlHZeJSObUx33G7lBpEy5tnZMEqDkXdtvw5WQCAKHgDcEZexfgAwBiw-iU5E6yppazlgvy6m3TAaIcJi1uMfjMl6x299D7tgnXJunvqR7q298oNj7__3ASf0Dq6cgmDMjMcqd7TTgWNDmmXt7ExhT3NPF3lqmuv7camfQ5fqxjp3Q5NCn6LGXpNXoxqE_HN8T0n3y4vvnZXxfrL51X3aV2okvNUGA111YJkQjZmVK0ehxJKCW2rRKkq5KUQlRGDkU2lkOHANAM56pqXumqUEufk_aF3F_yPCWPqH_wUsrzY8xyta9EInqnyQJngYww49lnBVoV9z6CfnffZef_kvD86z7F3x_JJb3E4hZ4kZ-DDAfiJ2o_RWHQGT1g-UgV1w2SZp3aua_-f7mxS8w06P7mUo3CIznuefvjP5f8CISK1zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335663732</pqid></control><display><type>article</type><title>Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>American Chemical Society Journals</source><creator>Lu, Gaoyuan ; Xu, Xiaowei ; Li, Gongyu ; Sun, Huiyong ; Wang, Nian ; Zhu, Yinxue ; Wan, Ning ; Shi, Yatao ; Wang, Guangji ; Li, Lingjun ; Hao, Haiping ; Ye, Hui</creator><creatorcontrib>Lu, Gaoyuan ; Xu, Xiaowei ; Li, Gongyu ; Sun, Huiyong ; Wang, Nian ; Zhu, Yinxue ; Wan, Ning ; Shi, Yatao ; Wang, Guangji ; Li, Lingjun ; Hao, Haiping ; Ye, Hui</creatorcontrib><description>The knowledge of ligand–protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand–protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand–protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)–MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-β segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a “real-world” application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM–MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b03827</identifier><identifier>PMID: 31769969</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - metabolism ; Analytical chemistry ; Animals ; Binding ; Binding Sites ; Biological activity ; Chemistry ; Chemistry, Analytical ; Chickens ; Crystallography ; Drug development ; ERRalpha Estrogen-Related Receptor ; Estrogens ; Footprinting ; Humans ; Ion Mobility Spectrometry - methods ; Ionic mobility ; Isomers ; Labels ; Ligands ; Lysozyme ; Mass spectrometry ; Mass Spectrometry - methods ; Mass spectroscopy ; Metabolic disorders ; Methane - analogs & derivatives ; Methane - chemistry ; Mobility ; Muramidase - chemistry ; Muramidase - metabolism ; Organic chemistry ; Physical Sciences ; Protein Binding ; Protein interaction ; Proteins ; Receptors, Estrogen - chemistry ; Receptors, Estrogen - metabolism ; Science & Technology ; Scientific imaging ; Separation ; Spectroscopy ; Therapeutic targets ; Workflow</subject><ispartof>Analytical chemistry (Washington), 2020-01, Vol.92 (1), p.947-956</ispartof><rights>Copyright American Chemical Society Jan 7, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000506719400087</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a422t-cb0658091397cfa8bfd4049088a34a5e24335c3dc975ae1ed1b109fb624b57aa3</citedby><cites>FETCH-LOGICAL-a422t-cb0658091397cfa8bfd4049088a34a5e24335c3dc975ae1ed1b109fb624b57aa3</cites><orcidid>0000-0002-2367-4433 ; 0000-0003-1886-2728 ; 0000-0002-7416-1558 ; 0000-0002-5142-1134 ; 0000-0003-0056-3869 ; 0000-0002-8297-1921 ; 0000-0001-7955-9541 ; 0000-0002-7107-7481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b03827$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b03827$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,28255,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31769969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Gaoyuan</creatorcontrib><creatorcontrib>Xu, Xiaowei</creatorcontrib><creatorcontrib>Li, Gongyu</creatorcontrib><creatorcontrib>Sun, Huiyong</creatorcontrib><creatorcontrib>Wang, Nian</creatorcontrib><creatorcontrib>Zhu, Yinxue</creatorcontrib><creatorcontrib>Wan, Ning</creatorcontrib><creatorcontrib>Shi, Yatao</creatorcontrib><creatorcontrib>Wang, Guangji</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Hao, Haiping</creatorcontrib><creatorcontrib>Ye, Hui</creatorcontrib><title>Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry</title><title>Analytical chemistry (Washington)</title><addtitle>ANAL CHEM</addtitle><addtitle>Anal. Chem</addtitle><description>The knowledge of ligand–protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand–protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand–protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)–MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-β segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a “real-world” application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM–MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development.</description><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Analytical chemistry</subject><subject>Animals</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biological activity</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Chickens</subject><subject>Crystallography</subject><subject>Drug development</subject><subject>ERRalpha Estrogen-Related Receptor</subject><subject>Estrogens</subject><subject>Footprinting</subject><subject>Humans</subject><subject>Ion Mobility Spectrometry - methods</subject><subject>Ionic mobility</subject><subject>Isomers</subject><subject>Labels</subject><subject>Ligands</subject><subject>Lysozyme</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Metabolic disorders</subject><subject>Methane - analogs & derivatives</subject><subject>Methane - chemistry</subject><subject>Mobility</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - metabolism</subject><subject>Organic chemistry</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Receptors, Estrogen - chemistry</subject><subject>Receptors, Estrogen - metabolism</subject><subject>Science & Technology</subject><subject>Scientific imaging</subject><subject>Separation</subject><subject>Spectroscopy</subject><subject>Therapeutic targets</subject><subject>Workflow</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1uEzEURi0EoqHwBghZYokmXNvz5yUatTRSKqoW1iPbc6e4Suxge4SyQOIdeMM-CR4lzRKx8l2c79P1uYS8ZbBkwNlHZeJSObUx33G7lBpEy5tnZMEqDkXdtvw5WQCAKHgDcEZexfgAwBiw-iU5E6yppazlgvy6m3TAaIcJi1uMfjMl6x299D7tgnXJunvqR7q298oNj7__3ASf0Dq6cgmDMjMcqd7TTgWNDmmXt7ExhT3NPF3lqmuv7camfQ5fqxjp3Q5NCn6LGXpNXoxqE_HN8T0n3y4vvnZXxfrL51X3aV2okvNUGA111YJkQjZmVK0ehxJKCW2rRKkq5KUQlRGDkU2lkOHANAM56pqXumqUEufk_aF3F_yPCWPqH_wUsrzY8xyta9EInqnyQJngYww49lnBVoV9z6CfnffZef_kvD86z7F3x_JJb3E4hZ4kZ-DDAfiJ2o_RWHQGT1g-UgV1w2SZp3aua_-f7mxS8w06P7mUo3CIznuefvjP5f8CISK1zw</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Lu, Gaoyuan</creator><creator>Xu, Xiaowei</creator><creator>Li, Gongyu</creator><creator>Sun, Huiyong</creator><creator>Wang, Nian</creator><creator>Zhu, Yinxue</creator><creator>Wan, Ning</creator><creator>Shi, Yatao</creator><creator>Wang, Guangji</creator><creator>Li, Lingjun</creator><creator>Hao, Haiping</creator><creator>Ye, Hui</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-2367-4433</orcidid><orcidid>https://orcid.org/0000-0003-1886-2728</orcidid><orcidid>https://orcid.org/0000-0002-7416-1558</orcidid><orcidid>https://orcid.org/0000-0002-5142-1134</orcidid><orcidid>https://orcid.org/0000-0003-0056-3869</orcidid><orcidid>https://orcid.org/0000-0002-8297-1921</orcidid><orcidid>https://orcid.org/0000-0001-7955-9541</orcidid><orcidid>https://orcid.org/0000-0002-7107-7481</orcidid></search><sort><creationdate>20200107</creationdate><title>Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry</title><author>Lu, Gaoyuan ; Xu, Xiaowei ; Li, Gongyu ; Sun, Huiyong ; Wang, Nian ; Zhu, Yinxue ; Wan, Ning ; Shi, Yatao ; Wang, Guangji ; Li, Lingjun ; Hao, Haiping ; Ye, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a422t-cb0658091397cfa8bfd4049088a34a5e24335c3dc975ae1ed1b109fb624b57aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Analytical chemistry</topic><topic>Animals</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biological activity</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Chickens</topic><topic>Crystallography</topic><topic>Drug development</topic><topic>ERRalpha Estrogen-Related Receptor</topic><topic>Estrogens</topic><topic>Footprinting</topic><topic>Humans</topic><topic>Ion Mobility Spectrometry - methods</topic><topic>Ionic mobility</topic><topic>Isomers</topic><topic>Labels</topic><topic>Ligands</topic><topic>Lysozyme</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Metabolic disorders</topic><topic>Methane - analogs & derivatives</topic><topic>Methane - chemistry</topic><topic>Mobility</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - metabolism</topic><topic>Organic chemistry</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Receptors, Estrogen - chemistry</topic><topic>Receptors, Estrogen - metabolism</topic><topic>Science & Technology</topic><topic>Scientific imaging</topic><topic>Separation</topic><topic>Spectroscopy</topic><topic>Therapeutic targets</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Gaoyuan</creatorcontrib><creatorcontrib>Xu, Xiaowei</creatorcontrib><creatorcontrib>Li, Gongyu</creatorcontrib><creatorcontrib>Sun, Huiyong</creatorcontrib><creatorcontrib>Wang, Nian</creatorcontrib><creatorcontrib>Zhu, Yinxue</creatorcontrib><creatorcontrib>Wan, Ning</creatorcontrib><creatorcontrib>Shi, Yatao</creatorcontrib><creatorcontrib>Wang, Guangji</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Hao, Haiping</creatorcontrib><creatorcontrib>Ye, Hui</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Gaoyuan</au><au>Xu, Xiaowei</au><au>Li, Gongyu</au><au>Sun, Huiyong</au><au>Wang, Nian</au><au>Zhu, Yinxue</au><au>Wan, Ning</au><au>Shi, Yatao</au><au>Wang, Guangji</au><au>Li, Lingjun</au><au>Hao, Haiping</au><au>Ye, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><stitle>ANAL CHEM</stitle><addtitle>Anal. Chem</addtitle><date>2020-01-07</date><risdate>2020</risdate><volume>92</volume><issue>1</issue><spage>947</spage><epage>956</epage><pages>947-956</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The knowledge of ligand–protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand–protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand–protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)–MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-β segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a “real-world” application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM–MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>31769969</pmid><doi>10.1021/acs.analchem.9b03827</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2367-4433</orcidid><orcidid>https://orcid.org/0000-0003-1886-2728</orcidid><orcidid>https://orcid.org/0000-0002-7416-1558</orcidid><orcidid>https://orcid.org/0000-0002-5142-1134</orcidid><orcidid>https://orcid.org/0000-0003-0056-3869</orcidid><orcidid>https://orcid.org/0000-0002-8297-1921</orcidid><orcidid>https://orcid.org/0000-0001-7955-9541</orcidid><orcidid>https://orcid.org/0000-0002-7107-7481</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-01, Vol.92 (1), p.947-956 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_pubmed_primary_31769969 |
source | MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals |
subjects | Amyloid beta-Peptides - chemistry Amyloid beta-Peptides - metabolism Analytical chemistry Animals Binding Binding Sites Biological activity Chemistry Chemistry, Analytical Chickens Crystallography Drug development ERRalpha Estrogen-Related Receptor Estrogens Footprinting Humans Ion Mobility Spectrometry - methods Ionic mobility Isomers Labels Ligands Lysozyme Mass spectrometry Mass Spectrometry - methods Mass spectroscopy Metabolic disorders Methane - analogs & derivatives Methane - chemistry Mobility Muramidase - chemistry Muramidase - metabolism Organic chemistry Physical Sciences Protein Binding Protein interaction Proteins Receptors, Estrogen - chemistry Receptors, Estrogen - metabolism Science & Technology Scientific imaging Separation Spectroscopy Therapeutic targets Workflow |
title | Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T20%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subresidue-Resolution%20Footprinting%20of%20Ligand%E2%80%93Protein%20Interactions%20by%20Carbene%20Chemistry%20and%20Ion%20Mobility%E2%80%93Mass%20Spectrometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lu,%20Gaoyuan&rft.date=2020-01-07&rft.volume=92&rft.issue=1&rft.spage=947&rft.epage=956&rft.pages=947-956&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b03827&rft_dat=%3Cproquest_pubme%3E2335663732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335663732&rft_id=info:pmid/31769969&rfr_iscdi=true |