Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography

White matter tractography mapping is an important tool for neuro-surgical planning and navigation. It relies on the accurate manual delineation of anatomical seeding ROIs (sROIs) by neuroanatomy experts. Stringent pre-operative time-constraints and limited availability of experts suggest that automa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-05, Vol.39 (5), p.1655-1667
Hauptverfasser: Avital, Itzik, Nelkenbaum, Ilya, Tsarfaty, Galia, Konen, Eli, Kiryati, Nahum, Mayer, Arnaldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1667
container_issue 5
container_start_page 1655
container_title IEEE transactions on medical imaging
container_volume 39
creator Avital, Itzik
Nelkenbaum, Ilya
Tsarfaty, Galia
Konen, Eli
Kiryati, Nahum
Mayer, Arnaldo
description White matter tractography mapping is an important tool for neuro-surgical planning and navigation. It relies on the accurate manual delineation of anatomical seeding ROIs (sROIs) by neuroanatomy experts. Stringent pre-operative time-constraints and limited availability of experts suggest that automation tools are strongly needed for the task. In this article, we propose and compare several multi-modal fully convolutional network architectures for segmentation of sROIs. Inspired by their manual segmentation practice, anatomical information from T1w maps is fused by the network with directionally encoded color (DEC) maps to compute the segmentation. Qualitative and quantitative validation was performed on image data from 75 real tumor resection candidates for the sROIs of the motor tract, the arcuate fasciculus, and optic radiation. Favorable comparison was also obtained with state-of-the-art methods for the tumor dataset as well as the ISMRM 2017 traCED challenge dataset. The proposed networks showed promising results, indicating they may significantly improve the efficiency of pre-surgical tractography mapping, without compromising its quality.
doi_str_mv 10.1109/TMI.2019.2954477
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_31751233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8906050</ieee_id><sourcerecordid>2317583987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-5283fc941af2b6628db5b800da6757c5dd892f0f470c7f3326883522b95222cc3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4Mobk7vgiAFL_PQ-ZI0TXLU4Y_BdOImeCtpmsyOrZ1Je9h_b8bmDl7yCO_zfbz3QegSwwBjkHez19GAAJYDIlmScH6EupgxEROWfB2jLhAuYoCUdNCZ9wsAnDCQp6hDMWeYUNpFkzfTOrWMpma-MlWjmrKuotqGvynKah59TEY-6vttuY1s7aJ3Z-Jp6-alDqkHp8oqmjmlm3ru1Pp7c45OrFp6c7GvPfT59DgbvsTjyfNoeD-ONU14EzMiqNUywcqSPE2JKHKWC4BCpZxxzYpCSGLBJhw0t5SSVAjKCMlleIjWtIf6u7lrV_-0xjfZqvTaLJeqMnXrM7I9UVApeEBv_qGLunVV2C5QkssgUrBAwY7SrvbeGZutXblSbpNhyLaysyA728rO9rJD5Ho_uM1XpjgE_uwG4GoHlMaYQ1tISIEB_QX874AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397910985</pqid></control><display><type>article</type><title>Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography</title><source>IEEE Electronic Library (IEL)</source><creator>Avital, Itzik ; Nelkenbaum, Ilya ; Tsarfaty, Galia ; Konen, Eli ; Kiryati, Nahum ; Mayer, Arnaldo</creator><creatorcontrib>Avital, Itzik ; Nelkenbaum, Ilya ; Tsarfaty, Galia ; Konen, Eli ; Kiryati, Nahum ; Mayer, Arnaldo</creatorcontrib><description>White matter tractography mapping is an important tool for neuro-surgical planning and navigation. It relies on the accurate manual delineation of anatomical seeding ROIs (sROIs) by neuroanatomy experts. Stringent pre-operative time-constraints and limited availability of experts suggest that automation tools are strongly needed for the task. In this article, we propose and compare several multi-modal fully convolutional network architectures for segmentation of sROIs. Inspired by their manual segmentation practice, anatomical information from T1w maps is fused by the network with directionally encoded color (DEC) maps to compute the segmentation. Qualitative and quantitative validation was performed on image data from 75 real tumor resection candidates for the sROIs of the motor tract, the arcuate fasciculus, and optic radiation. Favorable comparison was also obtained with state-of-the-art methods for the tumor dataset as well as the ISMRM 2017 traCED challenge dataset. The proposed networks showed promising results, indicating they may significantly improve the efficiency of pre-surgical tractography mapping, without compromising its quality.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2954477</identifier><identifier>PMID: 31751233</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anatomy ; Automation ; brain ; Brain architecture ; Brain mapping ; Computer architecture ; Datasets ; Fully convolutional neural networks ; Image segmentation ; Manuals ; Mapping ; Metastatic seeding ; multi-modal segmentation ; Planning ; Qualitative analysis ; Radiation ; Substantia alba ; Surgical instruments ; Task analysis ; Three-dimensional displays ; tractography ; Tumors</subject><ispartof>IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1655-1667</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-5283fc941af2b6628db5b800da6757c5dd892f0f470c7f3326883522b95222cc3</citedby><cites>FETCH-LOGICAL-c347t-5283fc941af2b6628db5b800da6757c5dd892f0f470c7f3326883522b95222cc3</cites><orcidid>0000-0003-3702-1764 ; 0000-0003-1436-2275 ; 0000-0001-5551-770X ; 0000-0002-6375-1798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8906050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8906050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31751233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Avital, Itzik</creatorcontrib><creatorcontrib>Nelkenbaum, Ilya</creatorcontrib><creatorcontrib>Tsarfaty, Galia</creatorcontrib><creatorcontrib>Konen, Eli</creatorcontrib><creatorcontrib>Kiryati, Nahum</creatorcontrib><creatorcontrib>Mayer, Arnaldo</creatorcontrib><title>Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>White matter tractography mapping is an important tool for neuro-surgical planning and navigation. It relies on the accurate manual delineation of anatomical seeding ROIs (sROIs) by neuroanatomy experts. Stringent pre-operative time-constraints and limited availability of experts suggest that automation tools are strongly needed for the task. In this article, we propose and compare several multi-modal fully convolutional network architectures for segmentation of sROIs. Inspired by their manual segmentation practice, anatomical information from T1w maps is fused by the network with directionally encoded color (DEC) maps to compute the segmentation. Qualitative and quantitative validation was performed on image data from 75 real tumor resection candidates for the sROIs of the motor tract, the arcuate fasciculus, and optic radiation. Favorable comparison was also obtained with state-of-the-art methods for the tumor dataset as well as the ISMRM 2017 traCED challenge dataset. The proposed networks showed promising results, indicating they may significantly improve the efficiency of pre-surgical tractography mapping, without compromising its quality.</description><subject>Anatomy</subject><subject>Automation</subject><subject>brain</subject><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>Fully convolutional neural networks</subject><subject>Image segmentation</subject><subject>Manuals</subject><subject>Mapping</subject><subject>Metastatic seeding</subject><subject>multi-modal segmentation</subject><subject>Planning</subject><subject>Qualitative analysis</subject><subject>Radiation</subject><subject>Substantia alba</subject><subject>Surgical instruments</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>tractography</subject><subject>Tumors</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4Mobk7vgiAFL_PQ-ZI0TXLU4Y_BdOImeCtpmsyOrZ1Je9h_b8bmDl7yCO_zfbz3QegSwwBjkHez19GAAJYDIlmScH6EupgxEROWfB2jLhAuYoCUdNCZ9wsAnDCQp6hDMWeYUNpFkzfTOrWMpma-MlWjmrKuotqGvynKah59TEY-6vttuY1s7aJ3Z-Jp6-alDqkHp8oqmjmlm3ru1Pp7c45OrFp6c7GvPfT59DgbvsTjyfNoeD-ONU14EzMiqNUywcqSPE2JKHKWC4BCpZxxzYpCSGLBJhw0t5SSVAjKCMlleIjWtIf6u7lrV_-0xjfZqvTaLJeqMnXrM7I9UVApeEBv_qGLunVV2C5QkssgUrBAwY7SrvbeGZutXblSbpNhyLaysyA728rO9rJD5Ho_uM1XpjgE_uwG4GoHlMaYQ1tISIEB_QX874AA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Avital, Itzik</creator><creator>Nelkenbaum, Ilya</creator><creator>Tsarfaty, Galia</creator><creator>Konen, Eli</creator><creator>Kiryati, Nahum</creator><creator>Mayer, Arnaldo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3702-1764</orcidid><orcidid>https://orcid.org/0000-0003-1436-2275</orcidid><orcidid>https://orcid.org/0000-0001-5551-770X</orcidid><orcidid>https://orcid.org/0000-0002-6375-1798</orcidid></search><sort><creationdate>20200501</creationdate><title>Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography</title><author>Avital, Itzik ; Nelkenbaum, Ilya ; Tsarfaty, Galia ; Konen, Eli ; Kiryati, Nahum ; Mayer, Arnaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-5283fc941af2b6628db5b800da6757c5dd892f0f470c7f3326883522b95222cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anatomy</topic><topic>Automation</topic><topic>brain</topic><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>Fully convolutional neural networks</topic><topic>Image segmentation</topic><topic>Manuals</topic><topic>Mapping</topic><topic>Metastatic seeding</topic><topic>multi-modal segmentation</topic><topic>Planning</topic><topic>Qualitative analysis</topic><topic>Radiation</topic><topic>Substantia alba</topic><topic>Surgical instruments</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>tractography</topic><topic>Tumors</topic><toplevel>online_resources</toplevel><creatorcontrib>Avital, Itzik</creatorcontrib><creatorcontrib>Nelkenbaum, Ilya</creatorcontrib><creatorcontrib>Tsarfaty, Galia</creatorcontrib><creatorcontrib>Konen, Eli</creatorcontrib><creatorcontrib>Kiryati, Nahum</creatorcontrib><creatorcontrib>Mayer, Arnaldo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Avital, Itzik</au><au>Nelkenbaum, Ilya</au><au>Tsarfaty, Galia</au><au>Konen, Eli</au><au>Kiryati, Nahum</au><au>Mayer, Arnaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>39</volume><issue>5</issue><spage>1655</spage><epage>1667</epage><pages>1655-1667</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>White matter tractography mapping is an important tool for neuro-surgical planning and navigation. It relies on the accurate manual delineation of anatomical seeding ROIs (sROIs) by neuroanatomy experts. Stringent pre-operative time-constraints and limited availability of experts suggest that automation tools are strongly needed for the task. In this article, we propose and compare several multi-modal fully convolutional network architectures for segmentation of sROIs. Inspired by their manual segmentation practice, anatomical information from T1w maps is fused by the network with directionally encoded color (DEC) maps to compute the segmentation. Qualitative and quantitative validation was performed on image data from 75 real tumor resection candidates for the sROIs of the motor tract, the arcuate fasciculus, and optic radiation. Favorable comparison was also obtained with state-of-the-art methods for the tumor dataset as well as the ISMRM 2017 traCED challenge dataset. The proposed networks showed promising results, indicating they may significantly improve the efficiency of pre-surgical tractography mapping, without compromising its quality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31751233</pmid><doi>10.1109/TMI.2019.2954477</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3702-1764</orcidid><orcidid>https://orcid.org/0000-0003-1436-2275</orcidid><orcidid>https://orcid.org/0000-0001-5551-770X</orcidid><orcidid>https://orcid.org/0000-0002-6375-1798</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1655-1667
issn 0278-0062
1558-254X
language eng
recordid cdi_pubmed_primary_31751233
source IEEE Electronic Library (IEL)
subjects Anatomy
Automation
brain
Brain architecture
Brain mapping
Computer architecture
Datasets
Fully convolutional neural networks
Image segmentation
Manuals
Mapping
Metastatic seeding
multi-modal segmentation
Planning
Qualitative analysis
Radiation
Substantia alba
Surgical instruments
Task analysis
Three-dimensional displays
tractography
Tumors
title Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Segmentation%20of%20Seeding%20ROIs%20(sROIs)%20for%20Pre-Surgical%20Brain%20Tractography&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Avital,%20Itzik&rft.date=2020-05-01&rft.volume=39&rft.issue=5&rft.spage=1655&rft.epage=1667&rft.pages=1655-1667&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2954477&rft_dat=%3Cproquest_RIE%3E2317583987%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397910985&rft_id=info:pmid/31751233&rft_ieee_id=8906050&rfr_iscdi=true