Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography
White matter tractography mapping is an important tool for neuro-surgical planning and navigation. It relies on the accurate manual delineation of anatomical seeding ROIs (sROIs) by neuroanatomy experts. Stringent pre-operative time-constraints and limited availability of experts suggest that automa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2020-05, Vol.39 (5), p.1655-1667 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1667 |
---|---|
container_issue | 5 |
container_start_page | 1655 |
container_title | IEEE transactions on medical imaging |
container_volume | 39 |
creator | Avital, Itzik Nelkenbaum, Ilya Tsarfaty, Galia Konen, Eli Kiryati, Nahum Mayer, Arnaldo |
description | White matter tractography mapping is an important tool for neuro-surgical planning and navigation. It relies on the accurate manual delineation of anatomical seeding ROIs (sROIs) by neuroanatomy experts. Stringent pre-operative time-constraints and limited availability of experts suggest that automation tools are strongly needed for the task. In this article, we propose and compare several multi-modal fully convolutional network architectures for segmentation of sROIs. Inspired by their manual segmentation practice, anatomical information from T1w maps is fused by the network with directionally encoded color (DEC) maps to compute the segmentation. Qualitative and quantitative validation was performed on image data from 75 real tumor resection candidates for the sROIs of the motor tract, the arcuate fasciculus, and optic radiation. Favorable comparison was also obtained with state-of-the-art methods for the tumor dataset as well as the ISMRM 2017 traCED challenge dataset. The proposed networks showed promising results, indicating they may significantly improve the efficiency of pre-surgical tractography mapping, without compromising its quality. |
doi_str_mv | 10.1109/TMI.2019.2954477 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_31751233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8906050</ieee_id><sourcerecordid>2317583987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-5283fc941af2b6628db5b800da6757c5dd892f0f470c7f3326883522b95222cc3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4Mobk7vgiAFL_PQ-ZI0TXLU4Y_BdOImeCtpmsyOrZ1Je9h_b8bmDl7yCO_zfbz3QegSwwBjkHez19GAAJYDIlmScH6EupgxEROWfB2jLhAuYoCUdNCZ9wsAnDCQp6hDMWeYUNpFkzfTOrWMpma-MlWjmrKuotqGvynKah59TEY-6vttuY1s7aJ3Z-Jp6-alDqkHp8oqmjmlm3ru1Pp7c45OrFp6c7GvPfT59DgbvsTjyfNoeD-ONU14EzMiqNUywcqSPE2JKHKWC4BCpZxxzYpCSGLBJhw0t5SSVAjKCMlleIjWtIf6u7lrV_-0xjfZqvTaLJeqMnXrM7I9UVApeEBv_qGLunVV2C5QkssgUrBAwY7SrvbeGZutXblSbpNhyLaysyA728rO9rJD5Ho_uM1XpjgE_uwG4GoHlMaYQ1tISIEB_QX874AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397910985</pqid></control><display><type>article</type><title>Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography</title><source>IEEE Electronic Library (IEL)</source><creator>Avital, Itzik ; Nelkenbaum, Ilya ; Tsarfaty, Galia ; Konen, Eli ; Kiryati, Nahum ; Mayer, Arnaldo</creator><creatorcontrib>Avital, Itzik ; Nelkenbaum, Ilya ; Tsarfaty, Galia ; Konen, Eli ; Kiryati, Nahum ; Mayer, Arnaldo</creatorcontrib><description>White matter tractography mapping is an important tool for neuro-surgical planning and navigation. It relies on the accurate manual delineation of anatomical seeding ROIs (sROIs) by neuroanatomy experts. Stringent pre-operative time-constraints and limited availability of experts suggest that automation tools are strongly needed for the task. In this article, we propose and compare several multi-modal fully convolutional network architectures for segmentation of sROIs. Inspired by their manual segmentation practice, anatomical information from T1w maps is fused by the network with directionally encoded color (DEC) maps to compute the segmentation. Qualitative and quantitative validation was performed on image data from 75 real tumor resection candidates for the sROIs of the motor tract, the arcuate fasciculus, and optic radiation. Favorable comparison was also obtained with state-of-the-art methods for the tumor dataset as well as the ISMRM 2017 traCED challenge dataset. The proposed networks showed promising results, indicating they may significantly improve the efficiency of pre-surgical tractography mapping, without compromising its quality.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2954477</identifier><identifier>PMID: 31751233</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anatomy ; Automation ; brain ; Brain architecture ; Brain mapping ; Computer architecture ; Datasets ; Fully convolutional neural networks ; Image segmentation ; Manuals ; Mapping ; Metastatic seeding ; multi-modal segmentation ; Planning ; Qualitative analysis ; Radiation ; Substantia alba ; Surgical instruments ; Task analysis ; Three-dimensional displays ; tractography ; Tumors</subject><ispartof>IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1655-1667</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-5283fc941af2b6628db5b800da6757c5dd892f0f470c7f3326883522b95222cc3</citedby><cites>FETCH-LOGICAL-c347t-5283fc941af2b6628db5b800da6757c5dd892f0f470c7f3326883522b95222cc3</cites><orcidid>0000-0003-3702-1764 ; 0000-0003-1436-2275 ; 0000-0001-5551-770X ; 0000-0002-6375-1798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8906050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8906050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31751233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Avital, Itzik</creatorcontrib><creatorcontrib>Nelkenbaum, Ilya</creatorcontrib><creatorcontrib>Tsarfaty, Galia</creatorcontrib><creatorcontrib>Konen, Eli</creatorcontrib><creatorcontrib>Kiryati, Nahum</creatorcontrib><creatorcontrib>Mayer, Arnaldo</creatorcontrib><title>Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>White matter tractography mapping is an important tool for neuro-surgical planning and navigation. It relies on the accurate manual delineation of anatomical seeding ROIs (sROIs) by neuroanatomy experts. Stringent pre-operative time-constraints and limited availability of experts suggest that automation tools are strongly needed for the task. In this article, we propose and compare several multi-modal fully convolutional network architectures for segmentation of sROIs. Inspired by their manual segmentation practice, anatomical information from T1w maps is fused by the network with directionally encoded color (DEC) maps to compute the segmentation. Qualitative and quantitative validation was performed on image data from 75 real tumor resection candidates for the sROIs of the motor tract, the arcuate fasciculus, and optic radiation. Favorable comparison was also obtained with state-of-the-art methods for the tumor dataset as well as the ISMRM 2017 traCED challenge dataset. The proposed networks showed promising results, indicating they may significantly improve the efficiency of pre-surgical tractography mapping, without compromising its quality.</description><subject>Anatomy</subject><subject>Automation</subject><subject>brain</subject><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>Fully convolutional neural networks</subject><subject>Image segmentation</subject><subject>Manuals</subject><subject>Mapping</subject><subject>Metastatic seeding</subject><subject>multi-modal segmentation</subject><subject>Planning</subject><subject>Qualitative analysis</subject><subject>Radiation</subject><subject>Substantia alba</subject><subject>Surgical instruments</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>tractography</subject><subject>Tumors</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4Mobk7vgiAFL_PQ-ZI0TXLU4Y_BdOImeCtpmsyOrZ1Je9h_b8bmDl7yCO_zfbz3QegSwwBjkHez19GAAJYDIlmScH6EupgxEROWfB2jLhAuYoCUdNCZ9wsAnDCQp6hDMWeYUNpFkzfTOrWMpma-MlWjmrKuotqGvynKah59TEY-6vttuY1s7aJ3Z-Jp6-alDqkHp8oqmjmlm3ru1Pp7c45OrFp6c7GvPfT59DgbvsTjyfNoeD-ONU14EzMiqNUywcqSPE2JKHKWC4BCpZxxzYpCSGLBJhw0t5SSVAjKCMlleIjWtIf6u7lrV_-0xjfZqvTaLJeqMnXrM7I9UVApeEBv_qGLunVV2C5QkssgUrBAwY7SrvbeGZutXblSbpNhyLaysyA728rO9rJD5Ho_uM1XpjgE_uwG4GoHlMaYQ1tISIEB_QX874AA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Avital, Itzik</creator><creator>Nelkenbaum, Ilya</creator><creator>Tsarfaty, Galia</creator><creator>Konen, Eli</creator><creator>Kiryati, Nahum</creator><creator>Mayer, Arnaldo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3702-1764</orcidid><orcidid>https://orcid.org/0000-0003-1436-2275</orcidid><orcidid>https://orcid.org/0000-0001-5551-770X</orcidid><orcidid>https://orcid.org/0000-0002-6375-1798</orcidid></search><sort><creationdate>20200501</creationdate><title>Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography</title><author>Avital, Itzik ; Nelkenbaum, Ilya ; Tsarfaty, Galia ; Konen, Eli ; Kiryati, Nahum ; Mayer, Arnaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-5283fc941af2b6628db5b800da6757c5dd892f0f470c7f3326883522b95222cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anatomy</topic><topic>Automation</topic><topic>brain</topic><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>Fully convolutional neural networks</topic><topic>Image segmentation</topic><topic>Manuals</topic><topic>Mapping</topic><topic>Metastatic seeding</topic><topic>multi-modal segmentation</topic><topic>Planning</topic><topic>Qualitative analysis</topic><topic>Radiation</topic><topic>Substantia alba</topic><topic>Surgical instruments</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>tractography</topic><topic>Tumors</topic><toplevel>online_resources</toplevel><creatorcontrib>Avital, Itzik</creatorcontrib><creatorcontrib>Nelkenbaum, Ilya</creatorcontrib><creatorcontrib>Tsarfaty, Galia</creatorcontrib><creatorcontrib>Konen, Eli</creatorcontrib><creatorcontrib>Kiryati, Nahum</creatorcontrib><creatorcontrib>Mayer, Arnaldo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Avital, Itzik</au><au>Nelkenbaum, Ilya</au><au>Tsarfaty, Galia</au><au>Konen, Eli</au><au>Kiryati, Nahum</au><au>Mayer, Arnaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>39</volume><issue>5</issue><spage>1655</spage><epage>1667</epage><pages>1655-1667</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>White matter tractography mapping is an important tool for neuro-surgical planning and navigation. It relies on the accurate manual delineation of anatomical seeding ROIs (sROIs) by neuroanatomy experts. Stringent pre-operative time-constraints and limited availability of experts suggest that automation tools are strongly needed for the task. In this article, we propose and compare several multi-modal fully convolutional network architectures for segmentation of sROIs. Inspired by their manual segmentation practice, anatomical information from T1w maps is fused by the network with directionally encoded color (DEC) maps to compute the segmentation. Qualitative and quantitative validation was performed on image data from 75 real tumor resection candidates for the sROIs of the motor tract, the arcuate fasciculus, and optic radiation. Favorable comparison was also obtained with state-of-the-art methods for the tumor dataset as well as the ISMRM 2017 traCED challenge dataset. The proposed networks showed promising results, indicating they may significantly improve the efficiency of pre-surgical tractography mapping, without compromising its quality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31751233</pmid><doi>10.1109/TMI.2019.2954477</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3702-1764</orcidid><orcidid>https://orcid.org/0000-0003-1436-2275</orcidid><orcidid>https://orcid.org/0000-0001-5551-770X</orcidid><orcidid>https://orcid.org/0000-0002-6375-1798</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1655-1667 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_pubmed_primary_31751233 |
source | IEEE Electronic Library (IEL) |
subjects | Anatomy Automation brain Brain architecture Brain mapping Computer architecture Datasets Fully convolutional neural networks Image segmentation Manuals Mapping Metastatic seeding multi-modal segmentation Planning Qualitative analysis Radiation Substantia alba Surgical instruments Task analysis Three-dimensional displays tractography Tumors |
title | Neural Segmentation of Seeding ROIs (sROIs) for Pre-Surgical Brain Tractography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Segmentation%20of%20Seeding%20ROIs%20(sROIs)%20for%20Pre-Surgical%20Brain%20Tractography&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Avital,%20Itzik&rft.date=2020-05-01&rft.volume=39&rft.issue=5&rft.spage=1655&rft.epage=1667&rft.pages=1655-1667&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2954477&rft_dat=%3Cproquest_RIE%3E2317583987%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397910985&rft_id=info:pmid/31751233&rft_ieee_id=8906050&rfr_iscdi=true |