Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis

Despite the potential to revolutionise disease diagnosis by performing data-driven classification, clinical interpretability of ConvNet remains challenging. In this paper, a novel clinical interpretable ConvNet architecture is proposed not only for accurate glaucoma diagnosis but also for the more t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2020-05, Vol.24 (5), p.1405-1412
Hauptverfasser: Liao, WangMin, Zou, BeiJi, Zhao, RongChang, Chen, YuanQiong, He, ZhiYou, Zhou, MengJie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1412
container_issue 5
container_start_page 1405
container_title IEEE journal of biomedical and health informatics
container_volume 24
creator Liao, WangMin
Zou, BeiJi
Zhao, RongChang
Chen, YuanQiong
He, ZhiYou
Zhou, MengJie
description Despite the potential to revolutionise disease diagnosis by performing data-driven classification, clinical interpretability of ConvNet remains challenging. In this paper, a novel clinical interpretable ConvNet architecture is proposed not only for accurate glaucoma diagnosis but also for the more transparent interpretation by highlighting the distinct regions recognised by the network. To the best of our knowledge, this is the first work of providing the interpretable diagnosis of glaucoma with the popular deep learning model. We propose a novel scheme for aggregating features from different scales to promote the performance of glaucoma diagnosis, which we refer to as M-LAP. Moreover, by modelling the correspondence from binary diagnosis information to the spatial pixels, the proposed scheme generates glaucoma activations, which bridge the gap between global semantical diagnosis and precise location. In contrast to previous works, it can discover the distinguish local regions in fundus images as evidence for clinical interpretable glaucoma diagnosis. Experimental results, performed on the challenging ORIGA datasets, show that our method on glaucoma diagnosis outperforms state-of-the-art methods with the highest AUC (0.88). Remarkably, the extensive results, optic disc segmentation (dice of 0.9) and local disease focus localization based on the evidence map, demonstrate the effectiveness of our methods on clinical interpretability.
doi_str_mv 10.1109/JBHI.2019.2949075
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_31647449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8880490</ieee_id><sourcerecordid>2400104090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b88351dfc6c35a3837e45aecd751cddb65cf9d3a0c627ad83e896d275822bb493</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoVmp_gAiy4MVLaz53k2Ntta1UvOg5ZJPZsmU_arJ78N-b0o-DuUyYeeZleBC6I3hCCFbP7y_L1YRioiZUcYUzcYFuKEnlmFIsL09_ovgAjULY4vhkbKn0Gg0YSXnGubpB01lVNqU1VbJqOvA7D53JK0jmALtkDcY3ZbNJPloHVVK0PllUprdtbZJ5aTZNG8pwi64KUwUYHesQfb-9fs2W4_XnYjWbrseWcdWNcymZIK6wqWXCMMky4MKAdZkg1rk8FbZQjhlsU5oZJxnEUx3NhKQ0z7liQ_R0yN359qeH0Om6DBaqyjTQ9kFThqUgEossoo__0G3b-yZepynHmGCOFY4UOVDWtyF4KPTOl7Xxv5pgvVes94r1XrE-Ko47D8fkPq_BnTdOQiNwfwBKADiPpZQ4BrA_oNJ9ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400104090</pqid></control><display><type>article</type><title>Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, WangMin ; Zou, BeiJi ; Zhao, RongChang ; Chen, YuanQiong ; He, ZhiYou ; Zhou, MengJie</creator><creatorcontrib>Liao, WangMin ; Zou, BeiJi ; Zhao, RongChang ; Chen, YuanQiong ; He, ZhiYou ; Zhou, MengJie</creatorcontrib><description>Despite the potential to revolutionise disease diagnosis by performing data-driven classification, clinical interpretability of ConvNet remains challenging. In this paper, a novel clinical interpretable ConvNet architecture is proposed not only for accurate glaucoma diagnosis but also for the more transparent interpretation by highlighting the distinct regions recognised by the network. To the best of our knowledge, this is the first work of providing the interpretable diagnosis of glaucoma with the popular deep learning model. We propose a novel scheme for aggregating features from different scales to promote the performance of glaucoma diagnosis, which we refer to as M-LAP. Moreover, by modelling the correspondence from binary diagnosis information to the spatial pixels, the proposed scheme generates glaucoma activations, which bridge the gap between global semantical diagnosis and precise location. In contrast to previous works, it can discover the distinguish local regions in fundus images as evidence for clinical interpretable glaucoma diagnosis. Experimental results, performed on the challenging ORIGA datasets, show that our method on glaucoma diagnosis outperforms state-of-the-art methods with the highest AUC (0.88). Remarkably, the extensive results, optic disc segmentation (dice of 0.9) and local disease focus localization based on the evidence map, demonstrate the effectiveness of our methods on clinical interpretability.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2019.2949075</identifier><identifier>PMID: 31647449</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biomedical optical imaging ; clinical interpreta-tion ; Computer architecture ; Convolution ; Deep Learning ; Diagnosis ; Feature extraction ; Glaucoma ; Glaucoma - diagnostic imaging ; Glaucoma diagnosis ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Lesions ; Localization ; Machine learning ; Medical diagnosis ; medical image processing ; Optic Disk - diagnostic imaging ; Optical imaging ; ROC Curve ; Semantics</subject><ispartof>IEEE journal of biomedical and health informatics, 2020-05, Vol.24 (5), p.1405-1412</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b88351dfc6c35a3837e45aecd751cddb65cf9d3a0c627ad83e896d275822bb493</citedby><cites>FETCH-LOGICAL-c349t-b88351dfc6c35a3837e45aecd751cddb65cf9d3a0c627ad83e896d275822bb493</cites><orcidid>0000-0002-9889-8853 ; 0000-0002-5714-8861 ; 0000-0002-5171-4121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8880490$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8880490$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31647449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, WangMin</creatorcontrib><creatorcontrib>Zou, BeiJi</creatorcontrib><creatorcontrib>Zhao, RongChang</creatorcontrib><creatorcontrib>Chen, YuanQiong</creatorcontrib><creatorcontrib>He, ZhiYou</creatorcontrib><creatorcontrib>Zhou, MengJie</creatorcontrib><title>Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Despite the potential to revolutionise disease diagnosis by performing data-driven classification, clinical interpretability of ConvNet remains challenging. In this paper, a novel clinical interpretable ConvNet architecture is proposed not only for accurate glaucoma diagnosis but also for the more transparent interpretation by highlighting the distinct regions recognised by the network. To the best of our knowledge, this is the first work of providing the interpretable diagnosis of glaucoma with the popular deep learning model. We propose a novel scheme for aggregating features from different scales to promote the performance of glaucoma diagnosis, which we refer to as M-LAP. Moreover, by modelling the correspondence from binary diagnosis information to the spatial pixels, the proposed scheme generates glaucoma activations, which bridge the gap between global semantical diagnosis and precise location. In contrast to previous works, it can discover the distinguish local regions in fundus images as evidence for clinical interpretable glaucoma diagnosis. Experimental results, performed on the challenging ORIGA datasets, show that our method on glaucoma diagnosis outperforms state-of-the-art methods with the highest AUC (0.88). Remarkably, the extensive results, optic disc segmentation (dice of 0.9) and local disease focus localization based on the evidence map, demonstrate the effectiveness of our methods on clinical interpretability.</description><subject>Biomedical optical imaging</subject><subject>clinical interpreta-tion</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Deep Learning</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Glaucoma</subject><subject>Glaucoma - diagnostic imaging</subject><subject>Glaucoma diagnosis</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>medical image processing</subject><subject>Optic Disk - diagnostic imaging</subject><subject>Optical imaging</subject><subject>ROC Curve</subject><subject>Semantics</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMoVmp_gAiy4MVLaz53k2Ntta1UvOg5ZJPZsmU_arJ78N-b0o-DuUyYeeZleBC6I3hCCFbP7y_L1YRioiZUcYUzcYFuKEnlmFIsL09_ovgAjULY4vhkbKn0Gg0YSXnGubpB01lVNqU1VbJqOvA7D53JK0jmALtkDcY3ZbNJPloHVVK0PllUprdtbZJ5aTZNG8pwi64KUwUYHesQfb-9fs2W4_XnYjWbrseWcdWNcymZIK6wqWXCMMky4MKAdZkg1rk8FbZQjhlsU5oZJxnEUx3NhKQ0z7liQ_R0yN359qeH0Om6DBaqyjTQ9kFThqUgEossoo__0G3b-yZepynHmGCOFY4UOVDWtyF4KPTOl7Xxv5pgvVes94r1XrE-Ko47D8fkPq_BnTdOQiNwfwBKADiPpZQ4BrA_oNJ9ug</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Liao, WangMin</creator><creator>Zou, BeiJi</creator><creator>Zhao, RongChang</creator><creator>Chen, YuanQiong</creator><creator>He, ZhiYou</creator><creator>Zhou, MengJie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9889-8853</orcidid><orcidid>https://orcid.org/0000-0002-5714-8861</orcidid><orcidid>https://orcid.org/0000-0002-5171-4121</orcidid></search><sort><creationdate>20200501</creationdate><title>Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis</title><author>Liao, WangMin ; Zou, BeiJi ; Zhao, RongChang ; Chen, YuanQiong ; He, ZhiYou ; Zhou, MengJie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b88351dfc6c35a3837e45aecd751cddb65cf9d3a0c627ad83e896d275822bb493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical optical imaging</topic><topic>clinical interpreta-tion</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Deep Learning</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Glaucoma</topic><topic>Glaucoma - diagnostic imaging</topic><topic>Glaucoma diagnosis</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>medical image processing</topic><topic>Optic Disk - diagnostic imaging</topic><topic>Optical imaging</topic><topic>ROC Curve</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, WangMin</creatorcontrib><creatorcontrib>Zou, BeiJi</creatorcontrib><creatorcontrib>Zhao, RongChang</creatorcontrib><creatorcontrib>Chen, YuanQiong</creatorcontrib><creatorcontrib>He, ZhiYou</creatorcontrib><creatorcontrib>Zhou, MengJie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, WangMin</au><au>Zou, BeiJi</au><au>Zhao, RongChang</au><au>Chen, YuanQiong</au><au>He, ZhiYou</au><au>Zhou, MengJie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>24</volume><issue>5</issue><spage>1405</spage><epage>1412</epage><pages>1405-1412</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Despite the potential to revolutionise disease diagnosis by performing data-driven classification, clinical interpretability of ConvNet remains challenging. In this paper, a novel clinical interpretable ConvNet architecture is proposed not only for accurate glaucoma diagnosis but also for the more transparent interpretation by highlighting the distinct regions recognised by the network. To the best of our knowledge, this is the first work of providing the interpretable diagnosis of glaucoma with the popular deep learning model. We propose a novel scheme for aggregating features from different scales to promote the performance of glaucoma diagnosis, which we refer to as M-LAP. Moreover, by modelling the correspondence from binary diagnosis information to the spatial pixels, the proposed scheme generates glaucoma activations, which bridge the gap between global semantical diagnosis and precise location. In contrast to previous works, it can discover the distinguish local regions in fundus images as evidence for clinical interpretable glaucoma diagnosis. Experimental results, performed on the challenging ORIGA datasets, show that our method on glaucoma diagnosis outperforms state-of-the-art methods with the highest AUC (0.88). Remarkably, the extensive results, optic disc segmentation (dice of 0.9) and local disease focus localization based on the evidence map, demonstrate the effectiveness of our methods on clinical interpretability.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31647449</pmid><doi>10.1109/JBHI.2019.2949075</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9889-8853</orcidid><orcidid>https://orcid.org/0000-0002-5714-8861</orcidid><orcidid>https://orcid.org/0000-0002-5171-4121</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2020-05, Vol.24 (5), p.1405-1412
issn 2168-2194
2168-2208
language eng
recordid cdi_pubmed_primary_31647449
source IEEE Electronic Library (IEL)
subjects Biomedical optical imaging
clinical interpreta-tion
Computer architecture
Convolution
Deep Learning
Diagnosis
Feature extraction
Glaucoma
Glaucoma - diagnostic imaging
Glaucoma diagnosis
Humans
Image Interpretation, Computer-Assisted - methods
Image segmentation
Lesions
Localization
Machine learning
Medical diagnosis
medical image processing
Optic Disk - diagnostic imaging
Optical imaging
ROC Curve
Semantics
title Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20Interpretable%20Deep%20Learning%20Model%20for%20Glaucoma%20Diagnosis&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Liao,%20WangMin&rft.date=2020-05-01&rft.volume=24&rft.issue=5&rft.spage=1405&rft.epage=1412&rft.pages=1405-1412&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2019.2949075&rft_dat=%3Cproquest_RIE%3E2400104090%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400104090&rft_id=info:pmid/31647449&rft_ieee_id=8880490&rfr_iscdi=true