Metabolic control analysis of L-tryptophan production with Escherichia coli based on data from short-term perturbation experiments

•Recombinant E. coli strain produces 14.3 g L−1 L-tryptophan within 68 h.•A metabolic analysis allowed insight into metabolism during the process.•Different carbon sources and uptake rates led to varying perturbations of metabolism.•Fluxes and concentrations enable estimation of elasticities and con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biotechnology 2020-01, Vol.307, p.15-28
Hauptverfasser: Tröndle, Julia, Schoppel, Kristin, Bleidt, Arne, Trachtmann, Natalia, Sprenger, Georg A., Weuster-Botz, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue
container_start_page 15
container_title Journal of biotechnology
container_volume 307
creator Tröndle, Julia
Schoppel, Kristin
Bleidt, Arne
Trachtmann, Natalia
Sprenger, Georg A.
Weuster-Botz, Dirk
description •Recombinant E. coli strain produces 14.3 g L−1 L-tryptophan within 68 h.•A metabolic analysis allowed insight into metabolism during the process.•Different carbon sources and uptake rates led to varying perturbations of metabolism.•Fluxes and concentrations enable estimation of elasticities and control coefficients.•Precursor supply and steps in L-tryptophan biosynthesis were identified as limiting. E. coli strain NT1259 /pF112aroFBLkan was able to produce 14.3 g L−1 L-tryptophan within 68 h in a fed-batch process from glycerol on a 15 L scale. To gain detailed insight into metabolism of this E. coli strain in the fed-batch process, a sample of L-tryptophan producing cells was withdrawn after 47 h, was separated rapidly and then resuspended in four parallel stirred-tank bioreactors with fresh media. Four different carbon sources (glucose, glycerol, succinate, pyruvate) were supplied individually with varying feeding rates within 19 min and the metabolic reactions of the cells in the four parallel reactors were analyzed by quantification of extracellular and intracellular substrate, product and metabolite concentrations. Data analysis allowed the estimation of intracellular carbon fluxes and of thermodynamic limitations concerning intracellular concentrations and reaction energies. Carbon fluxes and intracellular metabolite concentrations enabled the estimation of elasticities and flux control coefficients by applying metabolic control analysis making use of a metabolic model considering 48 enzymatic reactions and 56 metabolites. As the flux control coefficients describe connections between enzyme activities and metabolic fluxes, they reveal genetic targets for strain improvement. Metabolic control analysis of the recombinant E. coli cells withdrawn from the fed-batch production process clearly indicated that (i) the supply of two precursors for L-tryptophan biosynthesis, L-serine and phosphoribosyl-pyrophosphate, as well as (ii) the formation of aromatic byproducts and (iii) the enzymatic steps of igps and trps2 within the L-tryptophan biosynthesis pathway have major impact on fed-batch production of L-tryptophan from glycerol and should be the targets for further strain improvements.
doi_str_mv 10.1016/j.jbiotec.2019.10.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31639341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168165619308892</els_id><sourcerecordid>2308191621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-4d5aeb08839b3ffa61fc96f1ae47252606d70379d86afb10a673fafe02c22d943</originalsourceid><addsrcrecordid>eNqNkUuP0zAURi0EYjoDPwHkJRJK8SNxkhVC1TAgFbGBteXHteIqiYPtMHTLL8edltnCyq_zXfseI_SKki0lVLw7bA_ahwxmywjty96WkP4J2tCu5VXdCf4UbQrXVVQ04gpdp3QghNR9Q5-jK04F73lNN-j3F8hKh9EbbMKcYxixmtV4TD7h4PC-yvG45LAMasZLDHY12YcZ3_s84NtkBojeDF6V8OixVgksLsdWZYVdDBNOQ4i5yhAnvEDMa9TqoQD8Kks_wZzTC_TMqTHBy8t4g75_vP22-1Ttv9593n3YV6YmLFe1bRRo0nW819w5JagzvXBUQd2yhgkibEt429tOKKcpUaLlTjkgzDBm-5rfoDfnuqWPHyukLCefDIyjmiGsSTJOOtpTwWhBmzNqYkgpgpNLeayKR0mJPOmXB3nRL0_6T9tFf8m9vlyx6gnsY-qv7wJ0Z-AedHDJeJgNPGLlgxpSemlpmRG28_lB1i6scy7Rt_8fLfT7Mw3F6E8PUV4S1kcwWdrg_9HLHyTyvMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308191621</pqid></control><display><type>article</type><title>Metabolic control analysis of L-tryptophan production with Escherichia coli based on data from short-term perturbation experiments</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tröndle, Julia ; Schoppel, Kristin ; Bleidt, Arne ; Trachtmann, Natalia ; Sprenger, Georg A. ; Weuster-Botz, Dirk</creator><creatorcontrib>Tröndle, Julia ; Schoppel, Kristin ; Bleidt, Arne ; Trachtmann, Natalia ; Sprenger, Georg A. ; Weuster-Botz, Dirk</creatorcontrib><description>•Recombinant E. coli strain produces 14.3 g L−1 L-tryptophan within 68 h.•A metabolic analysis allowed insight into metabolism during the process.•Different carbon sources and uptake rates led to varying perturbations of metabolism.•Fluxes and concentrations enable estimation of elasticities and control coefficients.•Precursor supply and steps in L-tryptophan biosynthesis were identified as limiting. E. coli strain NT1259 /pF112aroFBLkan was able to produce 14.3 g L−1 L-tryptophan within 68 h in a fed-batch process from glycerol on a 15 L scale. To gain detailed insight into metabolism of this E. coli strain in the fed-batch process, a sample of L-tryptophan producing cells was withdrawn after 47 h, was separated rapidly and then resuspended in four parallel stirred-tank bioreactors with fresh media. Four different carbon sources (glucose, glycerol, succinate, pyruvate) were supplied individually with varying feeding rates within 19 min and the metabolic reactions of the cells in the four parallel reactors were analyzed by quantification of extracellular and intracellular substrate, product and metabolite concentrations. Data analysis allowed the estimation of intracellular carbon fluxes and of thermodynamic limitations concerning intracellular concentrations and reaction energies. Carbon fluxes and intracellular metabolite concentrations enabled the estimation of elasticities and flux control coefficients by applying metabolic control analysis making use of a metabolic model considering 48 enzymatic reactions and 56 metabolites. As the flux control coefficients describe connections between enzyme activities and metabolic fluxes, they reveal genetic targets for strain improvement. Metabolic control analysis of the recombinant E. coli cells withdrawn from the fed-batch production process clearly indicated that (i) the supply of two precursors for L-tryptophan biosynthesis, L-serine and phosphoribosyl-pyrophosphate, as well as (ii) the formation of aromatic byproducts and (iii) the enzymatic steps of igps and trps2 within the L-tryptophan biosynthesis pathway have major impact on fed-batch production of L-tryptophan from glycerol and should be the targets for further strain improvements.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/j.jbiotec.2019.10.009</identifier><identifier>PMID: 31639341</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Biotechnology &amp; Applied Microbiology ; Escherichia coli ; Glycerol ; L-Tryptophan ; Life Sciences &amp; Biomedicine ; Metabolic analysis ; Metabolic control analysis ; Perturbation experiment ; Science &amp; Technology</subject><ispartof>Journal of biotechnology, 2020-01, Vol.307, p.15-28</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>20</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000502527100002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c402t-4d5aeb08839b3ffa61fc96f1ae47252606d70379d86afb10a673fafe02c22d943</citedby><cites>FETCH-LOGICAL-c402t-4d5aeb08839b3ffa61fc96f1ae47252606d70379d86afb10a673fafe02c22d943</cites><orcidid>0000-0002-8728-1751 ; 0000-0002-7879-8978 ; 0000-0002-1171-4194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbiotec.2019.10.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31639341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tröndle, Julia</creatorcontrib><creatorcontrib>Schoppel, Kristin</creatorcontrib><creatorcontrib>Bleidt, Arne</creatorcontrib><creatorcontrib>Trachtmann, Natalia</creatorcontrib><creatorcontrib>Sprenger, Georg A.</creatorcontrib><creatorcontrib>Weuster-Botz, Dirk</creatorcontrib><title>Metabolic control analysis of L-tryptophan production with Escherichia coli based on data from short-term perturbation experiments</title><title>Journal of biotechnology</title><addtitle>J BIOTECHNOL</addtitle><addtitle>J Biotechnol</addtitle><description>•Recombinant E. coli strain produces 14.3 g L−1 L-tryptophan within 68 h.•A metabolic analysis allowed insight into metabolism during the process.•Different carbon sources and uptake rates led to varying perturbations of metabolism.•Fluxes and concentrations enable estimation of elasticities and control coefficients.•Precursor supply and steps in L-tryptophan biosynthesis were identified as limiting. E. coli strain NT1259 /pF112aroFBLkan was able to produce 14.3 g L−1 L-tryptophan within 68 h in a fed-batch process from glycerol on a 15 L scale. To gain detailed insight into metabolism of this E. coli strain in the fed-batch process, a sample of L-tryptophan producing cells was withdrawn after 47 h, was separated rapidly and then resuspended in four parallel stirred-tank bioreactors with fresh media. Four different carbon sources (glucose, glycerol, succinate, pyruvate) were supplied individually with varying feeding rates within 19 min and the metabolic reactions of the cells in the four parallel reactors were analyzed by quantification of extracellular and intracellular substrate, product and metabolite concentrations. Data analysis allowed the estimation of intracellular carbon fluxes and of thermodynamic limitations concerning intracellular concentrations and reaction energies. Carbon fluxes and intracellular metabolite concentrations enabled the estimation of elasticities and flux control coefficients by applying metabolic control analysis making use of a metabolic model considering 48 enzymatic reactions and 56 metabolites. As the flux control coefficients describe connections between enzyme activities and metabolic fluxes, they reveal genetic targets for strain improvement. Metabolic control analysis of the recombinant E. coli cells withdrawn from the fed-batch production process clearly indicated that (i) the supply of two precursors for L-tryptophan biosynthesis, L-serine and phosphoribosyl-pyrophosphate, as well as (ii) the formation of aromatic byproducts and (iii) the enzymatic steps of igps and trps2 within the L-tryptophan biosynthesis pathway have major impact on fed-batch production of L-tryptophan from glycerol and should be the targets for further strain improvements.</description><subject>Biotechnology &amp; Applied Microbiology</subject><subject>Escherichia coli</subject><subject>Glycerol</subject><subject>L-Tryptophan</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Metabolic analysis</subject><subject>Metabolic control analysis</subject><subject>Perturbation experiment</subject><subject>Science &amp; Technology</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkUuP0zAURi0EYjoDPwHkJRJK8SNxkhVC1TAgFbGBteXHteIqiYPtMHTLL8edltnCyq_zXfseI_SKki0lVLw7bA_ahwxmywjty96WkP4J2tCu5VXdCf4UbQrXVVQ04gpdp3QghNR9Q5-jK04F73lNN-j3F8hKh9EbbMKcYxixmtV4TD7h4PC-yvG45LAMasZLDHY12YcZ3_s84NtkBojeDF6V8OixVgksLsdWZYVdDBNOQ4i5yhAnvEDMa9TqoQD8Kks_wZzTC_TMqTHBy8t4g75_vP22-1Ttv9593n3YV6YmLFe1bRRo0nW819w5JagzvXBUQd2yhgkibEt429tOKKcpUaLlTjkgzDBm-5rfoDfnuqWPHyukLCefDIyjmiGsSTJOOtpTwWhBmzNqYkgpgpNLeayKR0mJPOmXB3nRL0_6T9tFf8m9vlyx6gnsY-qv7wJ0Z-AedHDJeJgNPGLlgxpSemlpmRG28_lB1i6scy7Rt_8fLfT7Mw3F6E8PUV4S1kcwWdrg_9HLHyTyvMs</recordid><startdate>20200110</startdate><enddate>20200110</enddate><creator>Tröndle, Julia</creator><creator>Schoppel, Kristin</creator><creator>Bleidt, Arne</creator><creator>Trachtmann, Natalia</creator><creator>Sprenger, Georg A.</creator><creator>Weuster-Botz, Dirk</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8728-1751</orcidid><orcidid>https://orcid.org/0000-0002-7879-8978</orcidid><orcidid>https://orcid.org/0000-0002-1171-4194</orcidid></search><sort><creationdate>20200110</creationdate><title>Metabolic control analysis of L-tryptophan production with Escherichia coli based on data from short-term perturbation experiments</title><author>Tröndle, Julia ; Schoppel, Kristin ; Bleidt, Arne ; Trachtmann, Natalia ; Sprenger, Georg A. ; Weuster-Botz, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-4d5aeb08839b3ffa61fc96f1ae47252606d70379d86afb10a673fafe02c22d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biotechnology &amp; Applied Microbiology</topic><topic>Escherichia coli</topic><topic>Glycerol</topic><topic>L-Tryptophan</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Metabolic analysis</topic><topic>Metabolic control analysis</topic><topic>Perturbation experiment</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tröndle, Julia</creatorcontrib><creatorcontrib>Schoppel, Kristin</creatorcontrib><creatorcontrib>Bleidt, Arne</creatorcontrib><creatorcontrib>Trachtmann, Natalia</creatorcontrib><creatorcontrib>Sprenger, Georg A.</creatorcontrib><creatorcontrib>Weuster-Botz, Dirk</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tröndle, Julia</au><au>Schoppel, Kristin</au><au>Bleidt, Arne</au><au>Trachtmann, Natalia</au><au>Sprenger, Georg A.</au><au>Weuster-Botz, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic control analysis of L-tryptophan production with Escherichia coli based on data from short-term perturbation experiments</atitle><jtitle>Journal of biotechnology</jtitle><stitle>J BIOTECHNOL</stitle><addtitle>J Biotechnol</addtitle><date>2020-01-10</date><risdate>2020</risdate><volume>307</volume><spage>15</spage><epage>28</epage><pages>15-28</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><abstract>•Recombinant E. coli strain produces 14.3 g L−1 L-tryptophan within 68 h.•A metabolic analysis allowed insight into metabolism during the process.•Different carbon sources and uptake rates led to varying perturbations of metabolism.•Fluxes and concentrations enable estimation of elasticities and control coefficients.•Precursor supply and steps in L-tryptophan biosynthesis were identified as limiting. E. coli strain NT1259 /pF112aroFBLkan was able to produce 14.3 g L−1 L-tryptophan within 68 h in a fed-batch process from glycerol on a 15 L scale. To gain detailed insight into metabolism of this E. coli strain in the fed-batch process, a sample of L-tryptophan producing cells was withdrawn after 47 h, was separated rapidly and then resuspended in four parallel stirred-tank bioreactors with fresh media. Four different carbon sources (glucose, glycerol, succinate, pyruvate) were supplied individually with varying feeding rates within 19 min and the metabolic reactions of the cells in the four parallel reactors were analyzed by quantification of extracellular and intracellular substrate, product and metabolite concentrations. Data analysis allowed the estimation of intracellular carbon fluxes and of thermodynamic limitations concerning intracellular concentrations and reaction energies. Carbon fluxes and intracellular metabolite concentrations enabled the estimation of elasticities and flux control coefficients by applying metabolic control analysis making use of a metabolic model considering 48 enzymatic reactions and 56 metabolites. As the flux control coefficients describe connections between enzyme activities and metabolic fluxes, they reveal genetic targets for strain improvement. Metabolic control analysis of the recombinant E. coli cells withdrawn from the fed-batch production process clearly indicated that (i) the supply of two precursors for L-tryptophan biosynthesis, L-serine and phosphoribosyl-pyrophosphate, as well as (ii) the formation of aromatic byproducts and (iii) the enzymatic steps of igps and trps2 within the L-tryptophan biosynthesis pathway have major impact on fed-batch production of L-tryptophan from glycerol and should be the targets for further strain improvements.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><pmid>31639341</pmid><doi>10.1016/j.jbiotec.2019.10.009</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8728-1751</orcidid><orcidid>https://orcid.org/0000-0002-7879-8978</orcidid><orcidid>https://orcid.org/0000-0002-1171-4194</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0168-1656
ispartof Journal of biotechnology, 2020-01, Vol.307, p.15-28
issn 0168-1656
1873-4863
language eng
recordid cdi_pubmed_primary_31639341
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Biotechnology & Applied Microbiology
Escherichia coli
Glycerol
L-Tryptophan
Life Sciences & Biomedicine
Metabolic analysis
Metabolic control analysis
Perturbation experiment
Science & Technology
title Metabolic control analysis of L-tryptophan production with Escherichia coli based on data from short-term perturbation experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20control%20analysis%20of%20L-tryptophan%20production%20with%20Escherichia%20coli%20based%20on%20data%20from%20short-term%20perturbation%20experiments&rft.jtitle=Journal%20of%20biotechnology&rft.au=Tr%C3%B6ndle,%20Julia&rft.date=2020-01-10&rft.volume=307&rft.spage=15&rft.epage=28&rft.pages=15-28&rft.issn=0168-1656&rft.eissn=1873-4863&rft_id=info:doi/10.1016/j.jbiotec.2019.10.009&rft_dat=%3Cproquest_pubme%3E2308191621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308191621&rft_id=info:pmid/31639341&rft_els_id=S0168165619308892&rfr_iscdi=true