Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation
With recently increasing environmental issues and foreseeable energy crisis, it is desirable to design cheap, efficient, and visible-light responsive nano-photocatalyst for CO conversion and pollutant degradation. Herein, we report a flower-like of MoS -based hybrid photocatalyst with high efficienc...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2020-01, Vol.381, p.120972 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 120972 |
container_title | Journal of hazardous materials |
container_volume | 381 |
creator | Khan, Bilawal Raziq, Fazal Bilal Faheem, M Umar Farooq, M Hussain, Sadam Ali, Farman Ullah, Abid Mavlonov, Abdurashid Zhao, Yang Liu, Zhongran Tian, He Shen, Huahai Zu, Xiaotao Li, Sean Xiao, Haiyan Xiang, Xia Qiao, Liang |
description | With recently increasing environmental issues and foreseeable energy crisis, it is desirable to design cheap, efficient, and visible-light responsive nano-photocatalyst for CO
conversion and pollutant degradation. Herein, we report a flower-like of MoS
-based hybrid photocatalyst with high efficiency through nanostructure and electronic structure engineering. Nanostructure control is used to fabricate MoS
in to flower-like nanosheets (NSs) with large surface active area. Then MoS
is coupled with conduction-band edge matched tin dioxide (SnO
) and decorated with Ag nanoparticles for suitable work function to create a unique cascade band alignment electronic structure to facilitate photoexcited charge transfer. It is shown that the amount-optimized nanocomposite of SnO
/Ag/MoS
exhibits exceptional visible-light photocatalytic activities for conversion of carbon dioxide (CO
) to methane (CH
), approximately one order of magnitude enhancement than original MoS
with the apparent quantum efficiency 2.38% at 420 nm. Similarly, the optimized sample also shows high activities for 2,4-diclorophenol, Methylene-Blue, Rhodamine-B and Methyl-Orange degradation as compared to pure MoS
. It is clearly demonstrated through combination of hydroxyl radical evaluation, photoelectrochemical and electrochemical impedance, that the enhanced photoactivities are attributed to the increased specific surface area, optimized band alignment for charge transfer and suppressed recombination. Our current work provides feasible routes for further research. |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_31563671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31563671</sourcerecordid><originalsourceid>FETCH-pubmed_primary_315636713</originalsourceid><addsrcrecordid>eNqFj01uwjAQhS2kCujPFdBcIFJSl6R7RNVNxaLdo4k9CUZmbNnjttykxy0guu7qLb73ozdR8-a505XWup2p25z3dV033fJpqma6Wba67Zq5-ll7MpICOwPIFhg5ZEnFSEkExKNjouR4hDBA74bCRlxg9PAW3uERJHxhshno21C8kk-XXe-p8m7cCcRdkGBQ0B_lNLLanFKJbLn0XDZj8L4IsoClMaHFM7lXNwP6TA9XvVOLl_XH6rWKpT-Q3cbkDpiO278r-l_DLz0NWEY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Khan, Bilawal ; Raziq, Fazal ; Bilal Faheem, M ; Umar Farooq, M ; Hussain, Sadam ; Ali, Farman ; Ullah, Abid ; Mavlonov, Abdurashid ; Zhao, Yang ; Liu, Zhongran ; Tian, He ; Shen, Huahai ; Zu, Xiaotao ; Li, Sean ; Xiao, Haiyan ; Xiang, Xia ; Qiao, Liang</creator><creatorcontrib>Khan, Bilawal ; Raziq, Fazal ; Bilal Faheem, M ; Umar Farooq, M ; Hussain, Sadam ; Ali, Farman ; Ullah, Abid ; Mavlonov, Abdurashid ; Zhao, Yang ; Liu, Zhongran ; Tian, He ; Shen, Huahai ; Zu, Xiaotao ; Li, Sean ; Xiao, Haiyan ; Xiang, Xia ; Qiao, Liang</creatorcontrib><description>With recently increasing environmental issues and foreseeable energy crisis, it is desirable to design cheap, efficient, and visible-light responsive nano-photocatalyst for CO
conversion and pollutant degradation. Herein, we report a flower-like of MoS
-based hybrid photocatalyst with high efficiency through nanostructure and electronic structure engineering. Nanostructure control is used to fabricate MoS
in to flower-like nanosheets (NSs) with large surface active area. Then MoS
is coupled with conduction-band edge matched tin dioxide (SnO
) and decorated with Ag nanoparticles for suitable work function to create a unique cascade band alignment electronic structure to facilitate photoexcited charge transfer. It is shown that the amount-optimized nanocomposite of SnO
/Ag/MoS
exhibits exceptional visible-light photocatalytic activities for conversion of carbon dioxide (CO
) to methane (CH
), approximately one order of magnitude enhancement than original MoS
with the apparent quantum efficiency 2.38% at 420 nm. Similarly, the optimized sample also shows high activities for 2,4-diclorophenol, Methylene-Blue, Rhodamine-B and Methyl-Orange degradation as compared to pure MoS
. It is clearly demonstrated through combination of hydroxyl radical evaluation, photoelectrochemical and electrochemical impedance, that the enhanced photoactivities are attributed to the increased specific surface area, optimized band alignment for charge transfer and suppressed recombination. Our current work provides feasible routes for further research.</description><identifier>EISSN: 1873-3336</identifier><identifier>PMID: 31563671</identifier><language>eng</language><publisher>Netherlands</publisher><ispartof>Journal of hazardous materials, 2020-01, Vol.381, p.120972</ispartof><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31563671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Bilawal</creatorcontrib><creatorcontrib>Raziq, Fazal</creatorcontrib><creatorcontrib>Bilal Faheem, M</creatorcontrib><creatorcontrib>Umar Farooq, M</creatorcontrib><creatorcontrib>Hussain, Sadam</creatorcontrib><creatorcontrib>Ali, Farman</creatorcontrib><creatorcontrib>Ullah, Abid</creatorcontrib><creatorcontrib>Mavlonov, Abdurashid</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Liu, Zhongran</creatorcontrib><creatorcontrib>Tian, He</creatorcontrib><creatorcontrib>Shen, Huahai</creatorcontrib><creatorcontrib>Zu, Xiaotao</creatorcontrib><creatorcontrib>Li, Sean</creatorcontrib><creatorcontrib>Xiao, Haiyan</creatorcontrib><creatorcontrib>Xiang, Xia</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><title>Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>With recently increasing environmental issues and foreseeable energy crisis, it is desirable to design cheap, efficient, and visible-light responsive nano-photocatalyst for CO
conversion and pollutant degradation. Herein, we report a flower-like of MoS
-based hybrid photocatalyst with high efficiency through nanostructure and electronic structure engineering. Nanostructure control is used to fabricate MoS
in to flower-like nanosheets (NSs) with large surface active area. Then MoS
is coupled with conduction-band edge matched tin dioxide (SnO
) and decorated with Ag nanoparticles for suitable work function to create a unique cascade band alignment electronic structure to facilitate photoexcited charge transfer. It is shown that the amount-optimized nanocomposite of SnO
/Ag/MoS
exhibits exceptional visible-light photocatalytic activities for conversion of carbon dioxide (CO
) to methane (CH
), approximately one order of magnitude enhancement than original MoS
with the apparent quantum efficiency 2.38% at 420 nm. Similarly, the optimized sample also shows high activities for 2,4-diclorophenol, Methylene-Blue, Rhodamine-B and Methyl-Orange degradation as compared to pure MoS
. It is clearly demonstrated through combination of hydroxyl radical evaluation, photoelectrochemical and electrochemical impedance, that the enhanced photoactivities are attributed to the increased specific surface area, optimized band alignment for charge transfer and suppressed recombination. Our current work provides feasible routes for further research.</description><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFj01uwjAQhS2kCujPFdBcIFJSl6R7RNVNxaLdo4k9CUZmbNnjttykxy0guu7qLb73ozdR8-a505XWup2p25z3dV033fJpqma6Wba67Zq5-ll7MpICOwPIFhg5ZEnFSEkExKNjouR4hDBA74bCRlxg9PAW3uERJHxhshno21C8kk-XXe-p8m7cCcRdkGBQ0B_lNLLanFKJbLn0XDZj8L4IsoClMaHFM7lXNwP6TA9XvVOLl_XH6rWKpT-Q3cbkDpiO278r-l_DLz0NWEY</recordid><startdate>20200105</startdate><enddate>20200105</enddate><creator>Khan, Bilawal</creator><creator>Raziq, Fazal</creator><creator>Bilal Faheem, M</creator><creator>Umar Farooq, M</creator><creator>Hussain, Sadam</creator><creator>Ali, Farman</creator><creator>Ullah, Abid</creator><creator>Mavlonov, Abdurashid</creator><creator>Zhao, Yang</creator><creator>Liu, Zhongran</creator><creator>Tian, He</creator><creator>Shen, Huahai</creator><creator>Zu, Xiaotao</creator><creator>Li, Sean</creator><creator>Xiao, Haiyan</creator><creator>Xiang, Xia</creator><creator>Qiao, Liang</creator><scope>NPM</scope></search><sort><creationdate>20200105</creationdate><title>Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation</title><author>Khan, Bilawal ; Raziq, Fazal ; Bilal Faheem, M ; Umar Farooq, M ; Hussain, Sadam ; Ali, Farman ; Ullah, Abid ; Mavlonov, Abdurashid ; Zhao, Yang ; Liu, Zhongran ; Tian, He ; Shen, Huahai ; Zu, Xiaotao ; Li, Sean ; Xiao, Haiyan ; Xiang, Xia ; Qiao, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_315636713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Bilawal</creatorcontrib><creatorcontrib>Raziq, Fazal</creatorcontrib><creatorcontrib>Bilal Faheem, M</creatorcontrib><creatorcontrib>Umar Farooq, M</creatorcontrib><creatorcontrib>Hussain, Sadam</creatorcontrib><creatorcontrib>Ali, Farman</creatorcontrib><creatorcontrib>Ullah, Abid</creatorcontrib><creatorcontrib>Mavlonov, Abdurashid</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Liu, Zhongran</creatorcontrib><creatorcontrib>Tian, He</creatorcontrib><creatorcontrib>Shen, Huahai</creatorcontrib><creatorcontrib>Zu, Xiaotao</creatorcontrib><creatorcontrib>Li, Sean</creatorcontrib><creatorcontrib>Xiao, Haiyan</creatorcontrib><creatorcontrib>Xiang, Xia</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><collection>PubMed</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Bilawal</au><au>Raziq, Fazal</au><au>Bilal Faheem, M</au><au>Umar Farooq, M</au><au>Hussain, Sadam</au><au>Ali, Farman</au><au>Ullah, Abid</au><au>Mavlonov, Abdurashid</au><au>Zhao, Yang</au><au>Liu, Zhongran</au><au>Tian, He</au><au>Shen, Huahai</au><au>Zu, Xiaotao</au><au>Li, Sean</au><au>Xiao, Haiyan</au><au>Xiang, Xia</au><au>Qiao, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2020-01-05</date><risdate>2020</risdate><volume>381</volume><spage>120972</spage><pages>120972-</pages><eissn>1873-3336</eissn><abstract>With recently increasing environmental issues and foreseeable energy crisis, it is desirable to design cheap, efficient, and visible-light responsive nano-photocatalyst for CO
conversion and pollutant degradation. Herein, we report a flower-like of MoS
-based hybrid photocatalyst with high efficiency through nanostructure and electronic structure engineering. Nanostructure control is used to fabricate MoS
in to flower-like nanosheets (NSs) with large surface active area. Then MoS
is coupled with conduction-band edge matched tin dioxide (SnO
) and decorated with Ag nanoparticles for suitable work function to create a unique cascade band alignment electronic structure to facilitate photoexcited charge transfer. It is shown that the amount-optimized nanocomposite of SnO
/Ag/MoS
exhibits exceptional visible-light photocatalytic activities for conversion of carbon dioxide (CO
) to methane (CH
), approximately one order of magnitude enhancement than original MoS
with the apparent quantum efficiency 2.38% at 420 nm. Similarly, the optimized sample also shows high activities for 2,4-diclorophenol, Methylene-Blue, Rhodamine-B and Methyl-Orange degradation as compared to pure MoS
. It is clearly demonstrated through combination of hydroxyl radical evaluation, photoelectrochemical and electrochemical impedance, that the enhanced photoactivities are attributed to the increased specific surface area, optimized band alignment for charge transfer and suppressed recombination. Our current work provides feasible routes for further research.</abstract><cop>Netherlands</cop><pmid>31563671</pmid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1873-3336 |
ispartof | Journal of hazardous materials, 2020-01, Vol.381, p.120972 |
issn | 1873-3336 |
language | eng |
recordid | cdi_pubmed_primary_31563671 |
source | Access via ScienceDirect (Elsevier) |
title | Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20and%20nanostructure%20engineering%20of%20bifunctional%20MoS%202%20towards%20exceptional%20visible-light%20photocatalytic%20CO%202%20reduction%20and%20pollutant%20degradation&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Khan,%20Bilawal&rft.date=2020-01-05&rft.volume=381&rft.spage=120972&rft.pages=120972-&rft.eissn=1873-3336&rft_id=info:doi/&rft_dat=%3Cpubmed%3E31563671%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31563671&rfr_iscdi=true |