Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation

With recently increasing environmental issues and foreseeable energy crisis, it is desirable to design cheap, efficient, and visible-light responsive nano-photocatalyst for CO conversion and pollutant degradation. Herein, we report a flower-like of MoS -based hybrid photocatalyst with high efficienc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2020-01, Vol.381, p.120972
Hauptverfasser: Khan, Bilawal, Raziq, Fazal, Bilal Faheem, M, Umar Farooq, M, Hussain, Sadam, Ali, Farman, Ullah, Abid, Mavlonov, Abdurashid, Zhao, Yang, Liu, Zhongran, Tian, He, Shen, Huahai, Zu, Xiaotao, Li, Sean, Xiao, Haiyan, Xiang, Xia, Qiao, Liang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120972
container_title Journal of hazardous materials
container_volume 381
creator Khan, Bilawal
Raziq, Fazal
Bilal Faheem, M
Umar Farooq, M
Hussain, Sadam
Ali, Farman
Ullah, Abid
Mavlonov, Abdurashid
Zhao, Yang
Liu, Zhongran
Tian, He
Shen, Huahai
Zu, Xiaotao
Li, Sean
Xiao, Haiyan
Xiang, Xia
Qiao, Liang
description With recently increasing environmental issues and foreseeable energy crisis, it is desirable to design cheap, efficient, and visible-light responsive nano-photocatalyst for CO conversion and pollutant degradation. Herein, we report a flower-like of MoS -based hybrid photocatalyst with high efficiency through nanostructure and electronic structure engineering. Nanostructure control is used to fabricate MoS in to flower-like nanosheets (NSs) with large surface active area. Then MoS is coupled with conduction-band edge matched tin dioxide (SnO ) and decorated with Ag nanoparticles for suitable work function to create a unique cascade band alignment electronic structure to facilitate photoexcited charge transfer. It is shown that the amount-optimized nanocomposite of SnO /Ag/MoS exhibits exceptional visible-light photocatalytic activities for conversion of carbon dioxide (CO ) to methane (CH ), approximately one order of magnitude enhancement than original MoS with the apparent quantum efficiency 2.38% at 420 nm. Similarly, the optimized sample also shows high activities for 2,4-diclorophenol, Methylene-Blue, Rhodamine-B and Methyl-Orange degradation as compared to pure MoS . It is clearly demonstrated through combination of hydroxyl radical evaluation, photoelectrochemical and electrochemical impedance, that the enhanced photoactivities are attributed to the increased specific surface area, optimized band alignment for charge transfer and suppressed recombination. Our current work provides feasible routes for further research.
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_31563671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31563671</sourcerecordid><originalsourceid>FETCH-pubmed_primary_315636713</originalsourceid><addsrcrecordid>eNqFj01uwjAQhS2kCujPFdBcIFJSl6R7RNVNxaLdo4k9CUZmbNnjttykxy0guu7qLb73ozdR8-a505XWup2p25z3dV033fJpqma6Wba67Zq5-ll7MpICOwPIFhg5ZEnFSEkExKNjouR4hDBA74bCRlxg9PAW3uERJHxhshno21C8kk-XXe-p8m7cCcRdkGBQ0B_lNLLanFKJbLn0XDZj8L4IsoClMaHFM7lXNwP6TA9XvVOLl_XH6rWKpT-Q3cbkDpiO278r-l_DLz0NWEY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Khan, Bilawal ; Raziq, Fazal ; Bilal Faheem, M ; Umar Farooq, M ; Hussain, Sadam ; Ali, Farman ; Ullah, Abid ; Mavlonov, Abdurashid ; Zhao, Yang ; Liu, Zhongran ; Tian, He ; Shen, Huahai ; Zu, Xiaotao ; Li, Sean ; Xiao, Haiyan ; Xiang, Xia ; Qiao, Liang</creator><creatorcontrib>Khan, Bilawal ; Raziq, Fazal ; Bilal Faheem, M ; Umar Farooq, M ; Hussain, Sadam ; Ali, Farman ; Ullah, Abid ; Mavlonov, Abdurashid ; Zhao, Yang ; Liu, Zhongran ; Tian, He ; Shen, Huahai ; Zu, Xiaotao ; Li, Sean ; Xiao, Haiyan ; Xiang, Xia ; Qiao, Liang</creatorcontrib><description>With recently increasing environmental issues and foreseeable energy crisis, it is desirable to design cheap, efficient, and visible-light responsive nano-photocatalyst for CO conversion and pollutant degradation. Herein, we report a flower-like of MoS -based hybrid photocatalyst with high efficiency through nanostructure and electronic structure engineering. Nanostructure control is used to fabricate MoS in to flower-like nanosheets (NSs) with large surface active area. Then MoS is coupled with conduction-band edge matched tin dioxide (SnO ) and decorated with Ag nanoparticles for suitable work function to create a unique cascade band alignment electronic structure to facilitate photoexcited charge transfer. It is shown that the amount-optimized nanocomposite of SnO /Ag/MoS exhibits exceptional visible-light photocatalytic activities for conversion of carbon dioxide (CO ) to methane (CH ), approximately one order of magnitude enhancement than original MoS with the apparent quantum efficiency 2.38% at 420 nm. Similarly, the optimized sample also shows high activities for 2,4-diclorophenol, Methylene-Blue, Rhodamine-B and Methyl-Orange degradation as compared to pure MoS . It is clearly demonstrated through combination of hydroxyl radical evaluation, photoelectrochemical and electrochemical impedance, that the enhanced photoactivities are attributed to the increased specific surface area, optimized band alignment for charge transfer and suppressed recombination. Our current work provides feasible routes for further research.</description><identifier>EISSN: 1873-3336</identifier><identifier>PMID: 31563671</identifier><language>eng</language><publisher>Netherlands</publisher><ispartof>Journal of hazardous materials, 2020-01, Vol.381, p.120972</ispartof><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31563671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Bilawal</creatorcontrib><creatorcontrib>Raziq, Fazal</creatorcontrib><creatorcontrib>Bilal Faheem, M</creatorcontrib><creatorcontrib>Umar Farooq, M</creatorcontrib><creatorcontrib>Hussain, Sadam</creatorcontrib><creatorcontrib>Ali, Farman</creatorcontrib><creatorcontrib>Ullah, Abid</creatorcontrib><creatorcontrib>Mavlonov, Abdurashid</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Liu, Zhongran</creatorcontrib><creatorcontrib>Tian, He</creatorcontrib><creatorcontrib>Shen, Huahai</creatorcontrib><creatorcontrib>Zu, Xiaotao</creatorcontrib><creatorcontrib>Li, Sean</creatorcontrib><creatorcontrib>Xiao, Haiyan</creatorcontrib><creatorcontrib>Xiang, Xia</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><title>Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>With recently increasing environmental issues and foreseeable energy crisis, it is desirable to design cheap, efficient, and visible-light responsive nano-photocatalyst for CO conversion and pollutant degradation. Herein, we report a flower-like of MoS -based hybrid photocatalyst with high efficiency through nanostructure and electronic structure engineering. Nanostructure control is used to fabricate MoS in to flower-like nanosheets (NSs) with large surface active area. Then MoS is coupled with conduction-band edge matched tin dioxide (SnO ) and decorated with Ag nanoparticles for suitable work function to create a unique cascade band alignment electronic structure to facilitate photoexcited charge transfer. It is shown that the amount-optimized nanocomposite of SnO /Ag/MoS exhibits exceptional visible-light photocatalytic activities for conversion of carbon dioxide (CO ) to methane (CH ), approximately one order of magnitude enhancement than original MoS with the apparent quantum efficiency 2.38% at 420 nm. Similarly, the optimized sample also shows high activities for 2,4-diclorophenol, Methylene-Blue, Rhodamine-B and Methyl-Orange degradation as compared to pure MoS . It is clearly demonstrated through combination of hydroxyl radical evaluation, photoelectrochemical and electrochemical impedance, that the enhanced photoactivities are attributed to the increased specific surface area, optimized band alignment for charge transfer and suppressed recombination. Our current work provides feasible routes for further research.</description><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFj01uwjAQhS2kCujPFdBcIFJSl6R7RNVNxaLdo4k9CUZmbNnjttykxy0guu7qLb73ozdR8-a505XWup2p25z3dV033fJpqma6Wba67Zq5-ll7MpICOwPIFhg5ZEnFSEkExKNjouR4hDBA74bCRlxg9PAW3uERJHxhshno21C8kk-XXe-p8m7cCcRdkGBQ0B_lNLLanFKJbLn0XDZj8L4IsoClMaHFM7lXNwP6TA9XvVOLl_XH6rWKpT-Q3cbkDpiO278r-l_DLz0NWEY</recordid><startdate>20200105</startdate><enddate>20200105</enddate><creator>Khan, Bilawal</creator><creator>Raziq, Fazal</creator><creator>Bilal Faheem, M</creator><creator>Umar Farooq, M</creator><creator>Hussain, Sadam</creator><creator>Ali, Farman</creator><creator>Ullah, Abid</creator><creator>Mavlonov, Abdurashid</creator><creator>Zhao, Yang</creator><creator>Liu, Zhongran</creator><creator>Tian, He</creator><creator>Shen, Huahai</creator><creator>Zu, Xiaotao</creator><creator>Li, Sean</creator><creator>Xiao, Haiyan</creator><creator>Xiang, Xia</creator><creator>Qiao, Liang</creator><scope>NPM</scope></search><sort><creationdate>20200105</creationdate><title>Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation</title><author>Khan, Bilawal ; Raziq, Fazal ; Bilal Faheem, M ; Umar Farooq, M ; Hussain, Sadam ; Ali, Farman ; Ullah, Abid ; Mavlonov, Abdurashid ; Zhao, Yang ; Liu, Zhongran ; Tian, He ; Shen, Huahai ; Zu, Xiaotao ; Li, Sean ; Xiao, Haiyan ; Xiang, Xia ; Qiao, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_315636713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Bilawal</creatorcontrib><creatorcontrib>Raziq, Fazal</creatorcontrib><creatorcontrib>Bilal Faheem, M</creatorcontrib><creatorcontrib>Umar Farooq, M</creatorcontrib><creatorcontrib>Hussain, Sadam</creatorcontrib><creatorcontrib>Ali, Farman</creatorcontrib><creatorcontrib>Ullah, Abid</creatorcontrib><creatorcontrib>Mavlonov, Abdurashid</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Liu, Zhongran</creatorcontrib><creatorcontrib>Tian, He</creatorcontrib><creatorcontrib>Shen, Huahai</creatorcontrib><creatorcontrib>Zu, Xiaotao</creatorcontrib><creatorcontrib>Li, Sean</creatorcontrib><creatorcontrib>Xiao, Haiyan</creatorcontrib><creatorcontrib>Xiang, Xia</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><collection>PubMed</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Bilawal</au><au>Raziq, Fazal</au><au>Bilal Faheem, M</au><au>Umar Farooq, M</au><au>Hussain, Sadam</au><au>Ali, Farman</au><au>Ullah, Abid</au><au>Mavlonov, Abdurashid</au><au>Zhao, Yang</au><au>Liu, Zhongran</au><au>Tian, He</au><au>Shen, Huahai</au><au>Zu, Xiaotao</au><au>Li, Sean</au><au>Xiao, Haiyan</au><au>Xiang, Xia</au><au>Qiao, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2020-01-05</date><risdate>2020</risdate><volume>381</volume><spage>120972</spage><pages>120972-</pages><eissn>1873-3336</eissn><abstract>With recently increasing environmental issues and foreseeable energy crisis, it is desirable to design cheap, efficient, and visible-light responsive nano-photocatalyst for CO conversion and pollutant degradation. Herein, we report a flower-like of MoS -based hybrid photocatalyst with high efficiency through nanostructure and electronic structure engineering. Nanostructure control is used to fabricate MoS in to flower-like nanosheets (NSs) with large surface active area. Then MoS is coupled with conduction-band edge matched tin dioxide (SnO ) and decorated with Ag nanoparticles for suitable work function to create a unique cascade band alignment electronic structure to facilitate photoexcited charge transfer. It is shown that the amount-optimized nanocomposite of SnO /Ag/MoS exhibits exceptional visible-light photocatalytic activities for conversion of carbon dioxide (CO ) to methane (CH ), approximately one order of magnitude enhancement than original MoS with the apparent quantum efficiency 2.38% at 420 nm. Similarly, the optimized sample also shows high activities for 2,4-diclorophenol, Methylene-Blue, Rhodamine-B and Methyl-Orange degradation as compared to pure MoS . It is clearly demonstrated through combination of hydroxyl radical evaluation, photoelectrochemical and electrochemical impedance, that the enhanced photoactivities are attributed to the increased specific surface area, optimized band alignment for charge transfer and suppressed recombination. Our current work provides feasible routes for further research.</abstract><cop>Netherlands</cop><pmid>31563671</pmid></addata></record>
fulltext fulltext
identifier EISSN: 1873-3336
ispartof Journal of hazardous materials, 2020-01, Vol.381, p.120972
issn 1873-3336
language eng
recordid cdi_pubmed_primary_31563671
source Access via ScienceDirect (Elsevier)
title Electronic and nanostructure engineering of bifunctional MoS 2 towards exceptional visible-light photocatalytic CO 2 reduction and pollutant degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20and%20nanostructure%20engineering%20of%20bifunctional%20MoS%202%20towards%20exceptional%20visible-light%20photocatalytic%20CO%202%20reduction%20and%20pollutant%20degradation&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Khan,%20Bilawal&rft.date=2020-01-05&rft.volume=381&rft.spage=120972&rft.pages=120972-&rft.eissn=1873-3336&rft_id=info:doi/&rft_dat=%3Cpubmed%3E31563671%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31563671&rfr_iscdi=true