Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy?
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by extensive inflammation, demyelination, axonal loss and gliosis. Evidence indicates that mast cells contribute to immunopathogenesis of both MS and experimental autoimmune encephalomyelitis (E...
Gespeichert in:
Veröffentlicht in: | Neurotherapeutics 2020-01, Vol.17 (1), p.218-234 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 1 |
container_start_page | 218 |
container_title | Neurotherapeutics |
container_volume | 17 |
creator | Pinke, Karen Henriette Zorzella-Pezavento, Sofia Fernanda Gonçalves de Campos Fraga-Silva, Thais Fernanda Mimura, Luiza Ayumi Nishiyama de Oliveira, Larissa Ragozo Cardoso Ishikawa, Larissa Lumi Watanabe Fernandes, Ana Angélica Henrique Lara, Vanessa Soares Sartori, Alexandrina |
description | Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by extensive inflammation, demyelination, axonal loss and gliosis. Evidence indicates that mast cells contribute to immunopathogenesis of both MS and experimental autoimmune encephalomyelitis (EAE), which is the most employed animal model to study this disease. Considering the inflammatory potential of mast cells, their presence at the CNS and their stabilization by certain drugs, we investigated the effect of ketotifen fumarate (Ket) on EAE development. EAE was induced in C57BL/6 mice by immunization with MOG
35-55
and the animals were injected daily with Ket from the seventh to the 17th day after disease induction. This early intervention with Ket significantly reduced disease prevalence and severity. The protective effect was concomitant with less NLRP3 inflammasome activation, rebalanced oxidative stress and also reduced T cell infiltration at the CNS. Even though Ket administration did not alter mast cell percentage at the CNS, it decreased the local CPA3 and CMA1 mRNA expression that are enzymes typically produced by these cells. Evaluation of the CNS-barrier permeability indicated that Ket clearly restored the permeability levels of this barrier. Ket also triggered an evident lymphadenomegaly due to accumulation of T cells that produced higher levels of encephalitogenic cytokines in response to
in vitro
stimulation with MOG. Altogether these findings reinforce the concept that mast cells are particularly relevant in MS immunopathogenesis and that Ket, a known stabilizer of their activity, has the potential to be used in MS control. |
doi_str_mv | 10.1007/s13311-019-00775-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31463682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282513569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2906b4d529172457852525122df18c6aa1199056f8508ff5e284770454e631993</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhhtR3HX1D3iQgBdBWvPZSXtYWdpP3EVh15sQMj3VM1l6kjFJO8y_t8ZZx4-DSA6pUE9V3qq3qh4y-oxRqp9nJgRjNWVtjU-tanOrOmZGm1pL3d7GuBWi1pyJo-pezteUKiFac7c6Ekw2ojH8uPrSuXHlw4K8iptALlwupINxzGTjy5J8gBKLHyC8IGfkUywQincjuSzJFVhsyRATuZjG4tcjkMt-hBSzz-RqCcmtty_vV3cGN2Z4cHOfVJ_fvL7q3tXnH9--787O615qWWre0mYm54q3THOptFEcD-N8PjDTN84x1rZUNYNR1AyDAm6k1lQqCY3AlDipTvd919NsBfMeZSY32nXyK5e2Njpv_8wEv7SL-M1q3JtUHBs8uWmQ4tcJcrErn3vcgwsQp2w5NyhIqGb31-O_0Os4pYDj7SiG6hstkeJ7qseN5ATDQQyjdmee3Ztn0Tz7wzxrsOjR72McSn66hcDTPbCBWRxy7yH0cMAo-stYgwow4hRp8_9054srPoYuTqFgqdiXZsTDAtKvIf-h_ztQn8O9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281578674</pqid></control><display><type>article</type><title>Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy?</title><source>PubMed Central Free</source><source>MEDLINE</source><source>SpringerNature Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Pinke, Karen Henriette ; Zorzella-Pezavento, Sofia Fernanda Gonçalves ; de Campos Fraga-Silva, Thais Fernanda ; Mimura, Luiza Ayumi Nishiyama ; de Oliveira, Larissa Ragozo Cardoso ; Ishikawa, Larissa Lumi Watanabe ; Fernandes, Ana Angélica Henrique ; Lara, Vanessa Soares ; Sartori, Alexandrina</creator><creatorcontrib>Pinke, Karen Henriette ; Zorzella-Pezavento, Sofia Fernanda Gonçalves ; de Campos Fraga-Silva, Thais Fernanda ; Mimura, Luiza Ayumi Nishiyama ; de Oliveira, Larissa Ragozo Cardoso ; Ishikawa, Larissa Lumi Watanabe ; Fernandes, Ana Angélica Henrique ; Lara, Vanessa Soares ; Sartori, Alexandrina</creatorcontrib><description>Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by extensive inflammation, demyelination, axonal loss and gliosis. Evidence indicates that mast cells contribute to immunopathogenesis of both MS and experimental autoimmune encephalomyelitis (EAE), which is the most employed animal model to study this disease. Considering the inflammatory potential of mast cells, their presence at the CNS and their stabilization by certain drugs, we investigated the effect of ketotifen fumarate (Ket) on EAE development. EAE was induced in C57BL/6 mice by immunization with MOG
35-55
and the animals were injected daily with Ket from the seventh to the 17th day after disease induction. This early intervention with Ket significantly reduced disease prevalence and severity. The protective effect was concomitant with less NLRP3 inflammasome activation, rebalanced oxidative stress and also reduced T cell infiltration at the CNS. Even though Ket administration did not alter mast cell percentage at the CNS, it decreased the local CPA3 and CMA1 mRNA expression that are enzymes typically produced by these cells. Evaluation of the CNS-barrier permeability indicated that Ket clearly restored the permeability levels of this barrier. Ket also triggered an evident lymphadenomegaly due to accumulation of T cells that produced higher levels of encephalitogenic cytokines in response to
in vitro
stimulation with MOG. Altogether these findings reinforce the concept that mast cells are particularly relevant in MS immunopathogenesis and that Ket, a known stabilizer of their activity, has the potential to be used in MS control.</description><identifier>ISSN: 1933-7213</identifier><identifier>ISSN: 1878-7479</identifier><identifier>EISSN: 1878-7479</identifier><identifier>DOI: 10.1007/s13311-019-00775-8</identifier><identifier>PMID: 31463682</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject><![CDATA[Animal models ; Animals ; Autoimmune diseases ; Biomedical and Life Sciences ; Biomedicine ; Cell activation ; Central nervous system ; Clinical Neurology ; Cytokines ; Demyelination ; Drug development ; Encephalomyelitis, Autoimmune, Experimental - drug therapy ; Encephalomyelitis, Autoimmune, Experimental - immunology ; Experimental allergic encephalomyelitis ; Female ; Gene expression ; Gliosis ; Immunization ; Immunopathogenesis ; Inflammasomes ; Inflammasomes - drug effects ; Inflammasomes - immunology ; Inflammasomes - metabolism ; Ketotifen - administration & dosage ; Life Sciences & Biomedicine ; Lymphocytes T ; Mast Cell Stabilizers - administration & dosage ; Mast cells ; Mast Cells - drug effects ; Mast Cells - immunology ; Mice, Inbred C57BL ; Multiple sclerosis ; Multiple Sclerosis - drug therapy ; Multiple Sclerosis - immunology ; Neurobiology ; Neurology ; Neurosciences ; Neurosciences & Neurology ; Neurosurgery ; NLR Family, Pyrin Domain-Containing 3 Protein - metabolism ; Oligodendrocyte-myelin glycoprotein ; Original ; Original Article ; Oxidative stress ; Oxidative Stress - drug effects ; Permeability ; Pharmacology & Pharmacy ; Science & Technology ; Spinal Cord - drug effects ; Spinal Cord - immunology ; Spinal Cord - pathology]]></subject><ispartof>Neurotherapeutics, 2020-01, Vol.17 (1), p.218-234</ispartof><rights>The American Society for Experimental NeuroTherapeutics, Inc. 2019</rights><rights>Neurotherapeutics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000511657800020</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-2906b4d529172457852525122df18c6aa1199056f8508ff5e284770454e631993</citedby><cites>FETCH-LOGICAL-c474t-2906b4d529172457852525122df18c6aa1199056f8508ff5e284770454e631993</cites><orcidid>0000-0001-8716-1250 ; 0000-0001-9030-0768 ; 0000-0003-3481-2181 ; 0000-0003-1986-0003 ; 0000-0003-4557-3331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007452/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007452/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,41492,42561,51323,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31463682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinke, Karen Henriette</creatorcontrib><creatorcontrib>Zorzella-Pezavento, Sofia Fernanda Gonçalves</creatorcontrib><creatorcontrib>de Campos Fraga-Silva, Thais Fernanda</creatorcontrib><creatorcontrib>Mimura, Luiza Ayumi Nishiyama</creatorcontrib><creatorcontrib>de Oliveira, Larissa Ragozo Cardoso</creatorcontrib><creatorcontrib>Ishikawa, Larissa Lumi Watanabe</creatorcontrib><creatorcontrib>Fernandes, Ana Angélica Henrique</creatorcontrib><creatorcontrib>Lara, Vanessa Soares</creatorcontrib><creatorcontrib>Sartori, Alexandrina</creatorcontrib><title>Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy?</title><title>Neurotherapeutics</title><addtitle>Neurotherapeutics</addtitle><addtitle>NEUROTHERAPEUTICS</addtitle><addtitle>Neurotherapeutics</addtitle><description>Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by extensive inflammation, demyelination, axonal loss and gliosis. Evidence indicates that mast cells contribute to immunopathogenesis of both MS and experimental autoimmune encephalomyelitis (EAE), which is the most employed animal model to study this disease. Considering the inflammatory potential of mast cells, their presence at the CNS and their stabilization by certain drugs, we investigated the effect of ketotifen fumarate (Ket) on EAE development. EAE was induced in C57BL/6 mice by immunization with MOG
35-55
and the animals were injected daily with Ket from the seventh to the 17th day after disease induction. This early intervention with Ket significantly reduced disease prevalence and severity. The protective effect was concomitant with less NLRP3 inflammasome activation, rebalanced oxidative stress and also reduced T cell infiltration at the CNS. Even though Ket administration did not alter mast cell percentage at the CNS, it decreased the local CPA3 and CMA1 mRNA expression that are enzymes typically produced by these cells. Evaluation of the CNS-barrier permeability indicated that Ket clearly restored the permeability levels of this barrier. Ket also triggered an evident lymphadenomegaly due to accumulation of T cells that produced higher levels of encephalitogenic cytokines in response to
in vitro
stimulation with MOG. Altogether these findings reinforce the concept that mast cells are particularly relevant in MS immunopathogenesis and that Ket, a known stabilizer of their activity, has the potential to be used in MS control.</description><subject>Animal models</subject><subject>Animals</subject><subject>Autoimmune diseases</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell activation</subject><subject>Central nervous system</subject><subject>Clinical Neurology</subject><subject>Cytokines</subject><subject>Demyelination</subject><subject>Drug development</subject><subject>Encephalomyelitis, Autoimmune, Experimental - drug therapy</subject><subject>Encephalomyelitis, Autoimmune, Experimental - immunology</subject><subject>Experimental allergic encephalomyelitis</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gliosis</subject><subject>Immunization</subject><subject>Immunopathogenesis</subject><subject>Inflammasomes</subject><subject>Inflammasomes - drug effects</subject><subject>Inflammasomes - immunology</subject><subject>Inflammasomes - metabolism</subject><subject>Ketotifen - administration & dosage</subject><subject>Life Sciences & Biomedicine</subject><subject>Lymphocytes T</subject><subject>Mast Cell Stabilizers - administration & dosage</subject><subject>Mast cells</subject><subject>Mast Cells - drug effects</subject><subject>Mast Cells - immunology</subject><subject>Mice, Inbred C57BL</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - drug therapy</subject><subject>Multiple Sclerosis - immunology</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Neurosciences & Neurology</subject><subject>Neurosurgery</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</subject><subject>Oligodendrocyte-myelin glycoprotein</subject><subject>Original</subject><subject>Original Article</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Permeability</subject><subject>Pharmacology & Pharmacy</subject><subject>Science & Technology</subject><subject>Spinal Cord - drug effects</subject><subject>Spinal Cord - immunology</subject><subject>Spinal Cord - pathology</subject><issn>1933-7213</issn><issn>1878-7479</issn><issn>1878-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU2LFDEQhhtR3HX1D3iQgBdBWvPZSXtYWdpP3EVh15sQMj3VM1l6kjFJO8y_t8ZZx4-DSA6pUE9V3qq3qh4y-oxRqp9nJgRjNWVtjU-tanOrOmZGm1pL3d7GuBWi1pyJo-pezteUKiFac7c6Ekw2ojH8uPrSuXHlw4K8iptALlwupINxzGTjy5J8gBKLHyC8IGfkUywQincjuSzJFVhsyRATuZjG4tcjkMt-hBSzz-RqCcmtty_vV3cGN2Z4cHOfVJ_fvL7q3tXnH9--787O615qWWre0mYm54q3THOptFEcD-N8PjDTN84x1rZUNYNR1AyDAm6k1lQqCY3AlDipTvd919NsBfMeZSY32nXyK5e2Njpv_8wEv7SL-M1q3JtUHBs8uWmQ4tcJcrErn3vcgwsQp2w5NyhIqGb31-O_0Os4pYDj7SiG6hstkeJ7qseN5ATDQQyjdmee3Ztn0Tz7wzxrsOjR72McSn66hcDTPbCBWRxy7yH0cMAo-stYgwow4hRp8_9054srPoYuTqFgqdiXZsTDAtKvIf-h_ztQn8O9</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Pinke, Karen Henriette</creator><creator>Zorzella-Pezavento, Sofia Fernanda Gonçalves</creator><creator>de Campos Fraga-Silva, Thais Fernanda</creator><creator>Mimura, Luiza Ayumi Nishiyama</creator><creator>de Oliveira, Larissa Ragozo Cardoso</creator><creator>Ishikawa, Larissa Lumi Watanabe</creator><creator>Fernandes, Ana Angélica Henrique</creator><creator>Lara, Vanessa Soares</creator><creator>Sartori, Alexandrina</creator><general>Springer International Publishing</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8716-1250</orcidid><orcidid>https://orcid.org/0000-0001-9030-0768</orcidid><orcidid>https://orcid.org/0000-0003-3481-2181</orcidid><orcidid>https://orcid.org/0000-0003-1986-0003</orcidid><orcidid>https://orcid.org/0000-0003-4557-3331</orcidid></search><sort><creationdate>20200101</creationdate><title>Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy?</title><author>Pinke, Karen Henriette ; Zorzella-Pezavento, Sofia Fernanda Gonçalves ; de Campos Fraga-Silva, Thais Fernanda ; Mimura, Luiza Ayumi Nishiyama ; de Oliveira, Larissa Ragozo Cardoso ; Ishikawa, Larissa Lumi Watanabe ; Fernandes, Ana Angélica Henrique ; Lara, Vanessa Soares ; Sartori, Alexandrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2906b4d529172457852525122df18c6aa1199056f8508ff5e284770454e631993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Autoimmune diseases</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell activation</topic><topic>Central nervous system</topic><topic>Clinical Neurology</topic><topic>Cytokines</topic><topic>Demyelination</topic><topic>Drug development</topic><topic>Encephalomyelitis, Autoimmune, Experimental - drug therapy</topic><topic>Encephalomyelitis, Autoimmune, Experimental - immunology</topic><topic>Experimental allergic encephalomyelitis</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gliosis</topic><topic>Immunization</topic><topic>Immunopathogenesis</topic><topic>Inflammasomes</topic><topic>Inflammasomes - drug effects</topic><topic>Inflammasomes - immunology</topic><topic>Inflammasomes - metabolism</topic><topic>Ketotifen - administration & dosage</topic><topic>Life Sciences & Biomedicine</topic><topic>Lymphocytes T</topic><topic>Mast Cell Stabilizers - administration & dosage</topic><topic>Mast cells</topic><topic>Mast Cells - drug effects</topic><topic>Mast Cells - immunology</topic><topic>Mice, Inbred C57BL</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - drug therapy</topic><topic>Multiple Sclerosis - immunology</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Neurosciences & Neurology</topic><topic>Neurosurgery</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</topic><topic>Oligodendrocyte-myelin glycoprotein</topic><topic>Original</topic><topic>Original Article</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Permeability</topic><topic>Pharmacology & Pharmacy</topic><topic>Science & Technology</topic><topic>Spinal Cord - drug effects</topic><topic>Spinal Cord - immunology</topic><topic>Spinal Cord - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinke, Karen Henriette</creatorcontrib><creatorcontrib>Zorzella-Pezavento, Sofia Fernanda Gonçalves</creatorcontrib><creatorcontrib>de Campos Fraga-Silva, Thais Fernanda</creatorcontrib><creatorcontrib>Mimura, Luiza Ayumi Nishiyama</creatorcontrib><creatorcontrib>de Oliveira, Larissa Ragozo Cardoso</creatorcontrib><creatorcontrib>Ishikawa, Larissa Lumi Watanabe</creatorcontrib><creatorcontrib>Fernandes, Ana Angélica Henrique</creatorcontrib><creatorcontrib>Lara, Vanessa Soares</creatorcontrib><creatorcontrib>Sartori, Alexandrina</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurotherapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinke, Karen Henriette</au><au>Zorzella-Pezavento, Sofia Fernanda Gonçalves</au><au>de Campos Fraga-Silva, Thais Fernanda</au><au>Mimura, Luiza Ayumi Nishiyama</au><au>de Oliveira, Larissa Ragozo Cardoso</au><au>Ishikawa, Larissa Lumi Watanabe</au><au>Fernandes, Ana Angélica Henrique</au><au>Lara, Vanessa Soares</au><au>Sartori, Alexandrina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy?</atitle><jtitle>Neurotherapeutics</jtitle><stitle>Neurotherapeutics</stitle><stitle>NEUROTHERAPEUTICS</stitle><addtitle>Neurotherapeutics</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>17</volume><issue>1</issue><spage>218</spage><epage>234</epage><pages>218-234</pages><issn>1933-7213</issn><issn>1878-7479</issn><eissn>1878-7479</eissn><abstract>Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by extensive inflammation, demyelination, axonal loss and gliosis. Evidence indicates that mast cells contribute to immunopathogenesis of both MS and experimental autoimmune encephalomyelitis (EAE), which is the most employed animal model to study this disease. Considering the inflammatory potential of mast cells, their presence at the CNS and their stabilization by certain drugs, we investigated the effect of ketotifen fumarate (Ket) on EAE development. EAE was induced in C57BL/6 mice by immunization with MOG
35-55
and the animals were injected daily with Ket from the seventh to the 17th day after disease induction. This early intervention with Ket significantly reduced disease prevalence and severity. The protective effect was concomitant with less NLRP3 inflammasome activation, rebalanced oxidative stress and also reduced T cell infiltration at the CNS. Even though Ket administration did not alter mast cell percentage at the CNS, it decreased the local CPA3 and CMA1 mRNA expression that are enzymes typically produced by these cells. Evaluation of the CNS-barrier permeability indicated that Ket clearly restored the permeability levels of this barrier. Ket also triggered an evident lymphadenomegaly due to accumulation of T cells that produced higher levels of encephalitogenic cytokines in response to
in vitro
stimulation with MOG. Altogether these findings reinforce the concept that mast cells are particularly relevant in MS immunopathogenesis and that Ket, a known stabilizer of their activity, has the potential to be used in MS control.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31463682</pmid><doi>10.1007/s13311-019-00775-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8716-1250</orcidid><orcidid>https://orcid.org/0000-0001-9030-0768</orcidid><orcidid>https://orcid.org/0000-0003-3481-2181</orcidid><orcidid>https://orcid.org/0000-0003-1986-0003</orcidid><orcidid>https://orcid.org/0000-0003-4557-3331</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1933-7213 |
ispartof | Neurotherapeutics, 2020-01, Vol.17 (1), p.218-234 |
issn | 1933-7213 1878-7479 1878-7479 |
language | eng |
recordid | cdi_pubmed_primary_31463682 |
source | PubMed Central Free; MEDLINE; SpringerNature Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animal models Animals Autoimmune diseases Biomedical and Life Sciences Biomedicine Cell activation Central nervous system Clinical Neurology Cytokines Demyelination Drug development Encephalomyelitis, Autoimmune, Experimental - drug therapy Encephalomyelitis, Autoimmune, Experimental - immunology Experimental allergic encephalomyelitis Female Gene expression Gliosis Immunization Immunopathogenesis Inflammasomes Inflammasomes - drug effects Inflammasomes - immunology Inflammasomes - metabolism Ketotifen - administration & dosage Life Sciences & Biomedicine Lymphocytes T Mast Cell Stabilizers - administration & dosage Mast cells Mast Cells - drug effects Mast Cells - immunology Mice, Inbred C57BL Multiple sclerosis Multiple Sclerosis - drug therapy Multiple Sclerosis - immunology Neurobiology Neurology Neurosciences Neurosciences & Neurology Neurosurgery NLR Family, Pyrin Domain-Containing 3 Protein - metabolism Oligodendrocyte-myelin glycoprotein Original Original Article Oxidative stress Oxidative Stress - drug effects Permeability Pharmacology & Pharmacy Science & Technology Spinal Cord - drug effects Spinal Cord - immunology Spinal Cord - pathology |
title | Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calming%20Down%20Mast%20Cells%20with%20Ketotifen:%20A%20Potential%20Strategy%20for%20Multiple%20Sclerosis%20Therapy?&rft.jtitle=Neurotherapeutics&rft.au=Pinke,%20Karen%20Henriette&rft.date=2020-01-01&rft.volume=17&rft.issue=1&rft.spage=218&rft.epage=234&rft.pages=218-234&rft.issn=1933-7213&rft.eissn=1878-7479&rft_id=info:doi/10.1007/s13311-019-00775-8&rft_dat=%3Cproquest_pubme%3E2282513569%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281578674&rft_id=info:pmid/31463682&rfr_iscdi=true |