Artificial Intelligence in Drug Treatment

The most common applications of artificial intelligence (AI) in drug treatment have to do with matching patients to their optimal drug or combination of drugs, predicting drug-target or drug-drug interactions, and optimizing treatment protocols. This review outlines some of the recently developed AI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of pharmacology and toxicology 2020-01, Vol.60 (1), p.353-369
Hauptverfasser: Romm, Eden L, Tsigelny, Igor F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 1
container_start_page 353
container_title Annual review of pharmacology and toxicology
container_volume 60
creator Romm, Eden L
Tsigelny, Igor F
description The most common applications of artificial intelligence (AI) in drug treatment have to do with matching patients to their optimal drug or combination of drugs, predicting drug-target or drug-drug interactions, and optimizing treatment protocols. This review outlines some of the recently developed AI methods aiding the drug treatment and administration process. Selection of the best drug(s) for a patient typically requires the integration of patient data, such as genetics or proteomics, with drug data, like compound chemical descriptors, to score the therapeutic efficacy of drugs. The prediction of drug interactions often relies on similarity metrics, assuming that drugs with similar structures or targets will have comparable behavior or may interfere with each other. Optimizing the dosage schedule for administration of drugs is performed using mathematical models to interpret pharmacokinetic and pharmacodynamic data. The recently developed and powerful models for each of these tasks are addressed, explained, and analyzed here.
doi_str_mv 10.1146/annurev-pharmtox-010919-023746
format Article
fullrecord <record><control><sourceid>annualreviews_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31348869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>n/a</sourcerecordid><originalsourceid>FETCH-LOGICAL-a509t-9227b3ac2094d48b1bd9d17502620a4fcd2a18d21fbfaa380e642c4b68ca347c3</originalsourceid><addsrcrecordid>eNqVkMtOwzAQRS0EoqXwCygrJBaGGdtx4g1S1fKoVIlNWUcTxylGSVo5KY-_J1Va9qxmc-fcmcPYDcIdotL31DS74D759p1C3W2-OSAYNByETJQ-YWOMVcyVBHXKxiC14KiVGLGLtv0AACMVnrORRKnSVJsxu52GzpfeeqqiRdO5qvJr11gX-Saah906WgVHXe2a7pKdlVS17uowJ-zt6XE1e-HL1-fFbLrkFIPpuBEiySVZAUYVKs0xL0yBSQxCCyBV2kIQpoXAMi-JZAquv8-qXKeWpEqsnLCHgWvDpm2DK7Nt8DWFnwwh2zvIDg6yo4NscJANDnrA9QDY7vLaFX_rx6f7wGwI7EFU9Sjvvtr_1vwC9Yh0zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial Intelligence in Drug Treatment</title><source>Annual Reviews Complete A-Z List</source><creator>Romm, Eden L ; Tsigelny, Igor F</creator><creatorcontrib>Romm, Eden L ; Tsigelny, Igor F</creatorcontrib><description>The most common applications of artificial intelligence (AI) in drug treatment have to do with matching patients to their optimal drug or combination of drugs, predicting drug-target or drug-drug interactions, and optimizing treatment protocols. This review outlines some of the recently developed AI methods aiding the drug treatment and administration process. Selection of the best drug(s) for a patient typically requires the integration of patient data, such as genetics or proteomics, with drug data, like compound chemical descriptors, to score the therapeutic efficacy of drugs. The prediction of drug interactions often relies on similarity metrics, assuming that drugs with similar structures or targets will have comparable behavior or may interfere with each other. Optimizing the dosage schedule for administration of drugs is performed using mathematical models to interpret pharmacokinetic and pharmacodynamic data. The recently developed and powerful models for each of these tasks are addressed, explained, and analyzed here.</description><identifier>ISSN: 0362-1642</identifier><identifier>EISSN: 1545-4304</identifier><identifier>DOI: 10.1146/annurev-pharmtox-010919-023746</identifier><identifier>PMID: 31348869</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>artificial intelligence ; combination therapy ; deep learning ; drug combination ; machine learning ; personalized medicine</subject><ispartof>Annual review of pharmacology and toxicology, 2020-01, Vol.60 (1), p.353-369</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a509t-9227b3ac2094d48b1bd9d17502620a4fcd2a18d21fbfaa380e642c4b68ca347c3</citedby><cites>FETCH-LOGICAL-a509t-9227b3ac2094d48b1bd9d17502620a4fcd2a18d21fbfaa380e642c4b68ca347c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-pharmtox-010919-023746?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-pharmtox-010919-023746$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,776,780,4168,27901,27902,77996,77997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31348869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romm, Eden L</creatorcontrib><creatorcontrib>Tsigelny, Igor F</creatorcontrib><title>Artificial Intelligence in Drug Treatment</title><title>Annual review of pharmacology and toxicology</title><addtitle>Annu Rev Pharmacol Toxicol</addtitle><description>The most common applications of artificial intelligence (AI) in drug treatment have to do with matching patients to their optimal drug or combination of drugs, predicting drug-target or drug-drug interactions, and optimizing treatment protocols. This review outlines some of the recently developed AI methods aiding the drug treatment and administration process. Selection of the best drug(s) for a patient typically requires the integration of patient data, such as genetics or proteomics, with drug data, like compound chemical descriptors, to score the therapeutic efficacy of drugs. The prediction of drug interactions often relies on similarity metrics, assuming that drugs with similar structures or targets will have comparable behavior or may interfere with each other. Optimizing the dosage schedule for administration of drugs is performed using mathematical models to interpret pharmacokinetic and pharmacodynamic data. The recently developed and powerful models for each of these tasks are addressed, explained, and analyzed here.</description><subject>artificial intelligence</subject><subject>combination therapy</subject><subject>deep learning</subject><subject>drug combination</subject><subject>machine learning</subject><subject>personalized medicine</subject><issn>0362-1642</issn><issn>1545-4304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqVkMtOwzAQRS0EoqXwCygrJBaGGdtx4g1S1fKoVIlNWUcTxylGSVo5KY-_J1Va9qxmc-fcmcPYDcIdotL31DS74D759p1C3W2-OSAYNByETJQ-YWOMVcyVBHXKxiC14KiVGLGLtv0AACMVnrORRKnSVJsxu52GzpfeeqqiRdO5qvJr11gX-Saah906WgVHXe2a7pKdlVS17uowJ-zt6XE1e-HL1-fFbLrkFIPpuBEiySVZAUYVKs0xL0yBSQxCCyBV2kIQpoXAMi-JZAquv8-qXKeWpEqsnLCHgWvDpm2DK7Nt8DWFnwwh2zvIDg6yo4NscJANDnrA9QDY7vLaFX_rx6f7wGwI7EFU9Sjvvtr_1vwC9Yh0zQ</recordid><startdate>20200106</startdate><enddate>20200106</enddate><creator>Romm, Eden L</creator><creator>Tsigelny, Igor F</creator><general>Annual Reviews</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200106</creationdate><title>Artificial Intelligence in Drug Treatment</title><author>Romm, Eden L ; Tsigelny, Igor F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a509t-9227b3ac2094d48b1bd9d17502620a4fcd2a18d21fbfaa380e642c4b68ca347c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>artificial intelligence</topic><topic>combination therapy</topic><topic>deep learning</topic><topic>drug combination</topic><topic>machine learning</topic><topic>personalized medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romm, Eden L</creatorcontrib><creatorcontrib>Tsigelny, Igor F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Annual review of pharmacology and toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romm, Eden L</au><au>Tsigelny, Igor F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence in Drug Treatment</atitle><jtitle>Annual review of pharmacology and toxicology</jtitle><addtitle>Annu Rev Pharmacol Toxicol</addtitle><date>2020-01-06</date><risdate>2020</risdate><volume>60</volume><issue>1</issue><spage>353</spage><epage>369</epage><pages>353-369</pages><issn>0362-1642</issn><eissn>1545-4304</eissn><abstract>The most common applications of artificial intelligence (AI) in drug treatment have to do with matching patients to their optimal drug or combination of drugs, predicting drug-target or drug-drug interactions, and optimizing treatment protocols. This review outlines some of the recently developed AI methods aiding the drug treatment and administration process. Selection of the best drug(s) for a patient typically requires the integration of patient data, such as genetics or proteomics, with drug data, like compound chemical descriptors, to score the therapeutic efficacy of drugs. The prediction of drug interactions often relies on similarity metrics, assuming that drugs with similar structures or targets will have comparable behavior or may interfere with each other. Optimizing the dosage schedule for administration of drugs is performed using mathematical models to interpret pharmacokinetic and pharmacodynamic data. The recently developed and powerful models for each of these tasks are addressed, explained, and analyzed here.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>31348869</pmid><doi>10.1146/annurev-pharmtox-010919-023746</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-1642
ispartof Annual review of pharmacology and toxicology, 2020-01, Vol.60 (1), p.353-369
issn 0362-1642
1545-4304
language eng
recordid cdi_pubmed_primary_31348869
source Annual Reviews Complete A-Z List
subjects artificial intelligence
combination therapy
deep learning
drug combination
machine learning
personalized medicine
title Artificial Intelligence in Drug Treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-annualreviews_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20in%20Drug%20Treatment&rft.jtitle=Annual%20review%20of%20pharmacology%20and%20toxicology&rft.au=Romm,%20Eden%20L&rft.date=2020-01-06&rft.volume=60&rft.issue=1&rft.spage=353&rft.epage=369&rft.pages=353-369&rft.issn=0362-1642&rft.eissn=1545-4304&rft_id=info:doi/10.1146/annurev-pharmtox-010919-023746&rft_dat=%3Cannualreviews_pubme%3En/a%3C/annualreviews_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31348869&rfr_iscdi=true