Trapping of sub-100 nm nanoparticles using gigahertz acoustofluidic tweezers for biosensing applications
In this study, we present a nanoscale acoustofluidic trap (AFT) that manipulates nanoparticles in a microfluidic system actuated by a gigahertz acoustic resonator. The AFT generates independent standing closed vortices with high-speed rotation. Via careful design and optimization of geometric confin...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-08, Vol.11 (31), p.14625-14634 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we present a nanoscale acoustofluidic trap (AFT) that manipulates nanoparticles in a microfluidic system actuated by a gigahertz acoustic resonator. The AFT generates independent standing closed vortices with high-speed rotation.
Via
careful design and optimization of geometric confinements, the AFT was able to effectively capture and enrich sub-100 nm nanoparticles with a low power consumption (0.25-5 μW μm
−2
) and rapid trapping (within 30 s), showing significantly enhanced particle-operating ability as compared to its acoustic and optical counterparts; using specifically functionalized nanoparticles (SFNPs) to selectively capture target molecules from the sample, the AFT led to the molecular concentration enhancement of ∼200 times. We investigated the feasibility of the SFNP-assisted AFT preconcentration method for biosensing applications and successfully demonstrated the capability of this method for the detection of serum prostate-specific antigen (PSA). The AFT was prepared
via
a fully CMOS-compatible process and thus could be conveniently integrated on a single chip, with potential for "lab-on-a-chip" or point-of-care (POC) nanoparticle-based biosensing applications.
In this study, we present a nanoscale acoustofluidic trap (AFT) that enables a simple, no-wash, and practical approach for biosensing applications. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c9nr03529j |