Magnetic force theory combined with quasi-particle self-consistent GW method

We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2019-10, Vol.31 (40), p.405503-405503
Hauptverfasser: Yoon, Hongkee, Jang, Seung Woo, Sim, Jae-Hoon, Kotani, Takao, Han, Myung Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405503
container_issue 40
container_start_page 405503
container_title Journal of physics. Condensed matter
container_volume 31
creator Yoon, Hongkee
Jang, Seung Woo
Sim, Jae-Hoon
Kotani, Takao
Han, Myung Joon
description We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this combination provides a way to investigate the effect of GW self-energy on the magnetic interactions which can hardly be quantified due to the limitation of current GW methodology in calculating the total energy difference in between different magnetic phases. In ferromagnetic 3d elements, GW self-energy slightly reduces the d bandwidth and enhances the interactions while the same long-range feature is maintained. In antiferromagnetic transition-metal monoxides, QSGW significantly reduces the interaction strengths by enlarging the gap. Orbital-dependent magnetic force calculations show that the coupling between eg and the nominally-empty 4s orbital is noticeably large in MnO which is reminiscent of the discussion for cuprates regarding the role of Cu-4s state. This combination of magnetic force theory with quasiparticle self-consistent GW can be a useful tool to study various magnetic materials.
doi_str_mv 10.1088/1361-648X/ab2b7e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31220821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2245635432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b0638ac1a3bed565c0bde41ad99c0f67586bdb6a5b8bf1525f3ca57c8a719c3c3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4Mobk7vnqQ3PViXNE2WHmXoFCZeFL2FJH1xHW3TJS2y_96Ozp0UHjx4fL_3eB9ClwTfESzElFBOYp6Kz6nSiZ7BERofRsdojDNGY5GJdITOQlhjjFNB01M0oiRJsEjIGC1f1FcNbWEi67yBqF2B89vIuEoXNeTRd9Guok2nQhE3yvdcCVGA0sbG1aEILdRttPiIKmhXLj9HJ1aVAS72fYLeHx_e5k_x8nXxPL9fxoZy0cYacyqUIYpqyBlnBuscUqLyLDPY8hkTXOeaK6aFtoQlzFKj2MwINSOZoYZO0M2wt_Fu00FoZVUEA2WpanBdkEmSMk5ZSpMexQNqvAvBg5WNLyrlt5JguXMod8LkTpgcHPaRq_32TleQHwK_0nrgegAK18i163zdPytN1RMyxX0xhqlsctuTt3-Q_17-AcpNiYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245635432</pqid></control><display><type>article</type><title>Magnetic force theory combined with quasi-particle self-consistent GW method</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yoon, Hongkee ; Jang, Seung Woo ; Sim, Jae-Hoon ; Kotani, Takao ; Han, Myung Joon</creator><creatorcontrib>Yoon, Hongkee ; Jang, Seung Woo ; Sim, Jae-Hoon ; Kotani, Takao ; Han, Myung Joon</creatorcontrib><description>We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this combination provides a way to investigate the effect of GW self-energy on the magnetic interactions which can hardly be quantified due to the limitation of current GW methodology in calculating the total energy difference in between different magnetic phases. In ferromagnetic 3d elements, GW self-energy slightly reduces the d bandwidth and enhances the interactions while the same long-range feature is maintained. In antiferromagnetic transition-metal monoxides, QSGW significantly reduces the interaction strengths by enlarging the gap. Orbital-dependent magnetic force calculations show that the coupling between eg and the nominally-empty 4s orbital is noticeably large in MnO which is reminiscent of the discussion for cuprates regarding the role of Cu-4s state. This combination of magnetic force theory with quasiparticle self-consistent GW can be a useful tool to study various magnetic materials.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab2b7e</identifier><identifier>PMID: 31220821</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>density functional theory ; magnetic force theory ; quasiparticle self-consistent GW</subject><ispartof>Journal of physics. Condensed matter, 2019-10, Vol.31 (40), p.405503-405503</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b0638ac1a3bed565c0bde41ad99c0f67586bdb6a5b8bf1525f3ca57c8a719c3c3</citedby><cites>FETCH-LOGICAL-c368t-b0638ac1a3bed565c0bde41ad99c0f67586bdb6a5b8bf1525f3ca57c8a719c3c3</cites><orcidid>0000-0002-8089-7991 ; 0000-0003-4821-6743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ab2b7e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31220821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Hongkee</creatorcontrib><creatorcontrib>Jang, Seung Woo</creatorcontrib><creatorcontrib>Sim, Jae-Hoon</creatorcontrib><creatorcontrib>Kotani, Takao</creatorcontrib><creatorcontrib>Han, Myung Joon</creatorcontrib><title>Magnetic force theory combined with quasi-particle self-consistent GW method</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this combination provides a way to investigate the effect of GW self-energy on the magnetic interactions which can hardly be quantified due to the limitation of current GW methodology in calculating the total energy difference in between different magnetic phases. In ferromagnetic 3d elements, GW self-energy slightly reduces the d bandwidth and enhances the interactions while the same long-range feature is maintained. In antiferromagnetic transition-metal monoxides, QSGW significantly reduces the interaction strengths by enlarging the gap. Orbital-dependent magnetic force calculations show that the coupling between eg and the nominally-empty 4s orbital is noticeably large in MnO which is reminiscent of the discussion for cuprates regarding the role of Cu-4s state. This combination of magnetic force theory with quasiparticle self-consistent GW can be a useful tool to study various magnetic materials.</description><subject>density functional theory</subject><subject>magnetic force theory</subject><subject>quasiparticle self-consistent GW</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4Mobk7vnqQ3PViXNE2WHmXoFCZeFL2FJH1xHW3TJS2y_96Ozp0UHjx4fL_3eB9ClwTfESzElFBOYp6Kz6nSiZ7BERofRsdojDNGY5GJdITOQlhjjFNB01M0oiRJsEjIGC1f1FcNbWEi67yBqF2B89vIuEoXNeTRd9Guok2nQhE3yvdcCVGA0sbG1aEILdRttPiIKmhXLj9HJ1aVAS72fYLeHx_e5k_x8nXxPL9fxoZy0cYacyqUIYpqyBlnBuscUqLyLDPY8hkTXOeaK6aFtoQlzFKj2MwINSOZoYZO0M2wt_Fu00FoZVUEA2WpanBdkEmSMk5ZSpMexQNqvAvBg5WNLyrlt5JguXMod8LkTpgcHPaRq_32TleQHwK_0nrgegAK18i163zdPytN1RMyxX0xhqlsctuTt3-Q_17-AcpNiYU</recordid><startdate>20191009</startdate><enddate>20191009</enddate><creator>Yoon, Hongkee</creator><creator>Jang, Seung Woo</creator><creator>Sim, Jae-Hoon</creator><creator>Kotani, Takao</creator><creator>Han, Myung Joon</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8089-7991</orcidid><orcidid>https://orcid.org/0000-0003-4821-6743</orcidid></search><sort><creationdate>20191009</creationdate><title>Magnetic force theory combined with quasi-particle self-consistent GW method</title><author>Yoon, Hongkee ; Jang, Seung Woo ; Sim, Jae-Hoon ; Kotani, Takao ; Han, Myung Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b0638ac1a3bed565c0bde41ad99c0f67586bdb6a5b8bf1525f3ca57c8a719c3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>density functional theory</topic><topic>magnetic force theory</topic><topic>quasiparticle self-consistent GW</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Hongkee</creatorcontrib><creatorcontrib>Jang, Seung Woo</creatorcontrib><creatorcontrib>Sim, Jae-Hoon</creatorcontrib><creatorcontrib>Kotani, Takao</creatorcontrib><creatorcontrib>Han, Myung Joon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Hongkee</au><au>Jang, Seung Woo</au><au>Sim, Jae-Hoon</au><au>Kotani, Takao</au><au>Han, Myung Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic force theory combined with quasi-particle self-consistent GW method</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2019-10-09</date><risdate>2019</risdate><volume>31</volume><issue>40</issue><spage>405503</spage><epage>405503</epage><pages>405503-405503</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this combination provides a way to investigate the effect of GW self-energy on the magnetic interactions which can hardly be quantified due to the limitation of current GW methodology in calculating the total energy difference in between different magnetic phases. In ferromagnetic 3d elements, GW self-energy slightly reduces the d bandwidth and enhances the interactions while the same long-range feature is maintained. In antiferromagnetic transition-metal monoxides, QSGW significantly reduces the interaction strengths by enlarging the gap. Orbital-dependent magnetic force calculations show that the coupling between eg and the nominally-empty 4s orbital is noticeably large in MnO which is reminiscent of the discussion for cuprates regarding the role of Cu-4s state. This combination of magnetic force theory with quasiparticle self-consistent GW can be a useful tool to study various magnetic materials.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31220821</pmid><doi>10.1088/1361-648X/ab2b7e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8089-7991</orcidid><orcidid>https://orcid.org/0000-0003-4821-6743</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2019-10, Vol.31 (40), p.405503-405503
issn 0953-8984
1361-648X
language eng
recordid cdi_pubmed_primary_31220821
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects density functional theory
magnetic force theory
quasiparticle self-consistent GW
title Magnetic force theory combined with quasi-particle self-consistent GW method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20force%20theory%20combined%20with%20quasi-particle%20self-consistent%20GW%20method&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Yoon,%20Hongkee&rft.date=2019-10-09&rft.volume=31&rft.issue=40&rft.spage=405503&rft.epage=405503&rft.pages=405503-405503&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab2b7e&rft_dat=%3Cproquest_pubme%3E2245635432%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245635432&rft_id=info:pmid/31220821&rfr_iscdi=true