Magnetic force theory combined with quasi-particle self-consistent GW method
We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this c...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2019-10, Vol.31 (40), p.405503-405503 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 405503 |
---|---|
container_issue | 40 |
container_start_page | 405503 |
container_title | Journal of physics. Condensed matter |
container_volume | 31 |
creator | Yoon, Hongkee Jang, Seung Woo Sim, Jae-Hoon Kotani, Takao Han, Myung Joon |
description | We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this combination provides a way to investigate the effect of GW self-energy on the magnetic interactions which can hardly be quantified due to the limitation of current GW methodology in calculating the total energy difference in between different magnetic phases. In ferromagnetic 3d elements, GW self-energy slightly reduces the d bandwidth and enhances the interactions while the same long-range feature is maintained. In antiferromagnetic transition-metal monoxides, QSGW significantly reduces the interaction strengths by enlarging the gap. Orbital-dependent magnetic force calculations show that the coupling between eg and the nominally-empty 4s orbital is noticeably large in MnO which is reminiscent of the discussion for cuprates regarding the role of Cu-4s state. This combination of magnetic force theory with quasiparticle self-consistent GW can be a useful tool to study various magnetic materials. |
doi_str_mv | 10.1088/1361-648X/ab2b7e |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31220821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2245635432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b0638ac1a3bed565c0bde41ad99c0f67586bdb6a5b8bf1525f3ca57c8a719c3c3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4Mobk7vnqQ3PViXNE2WHmXoFCZeFL2FJH1xHW3TJS2y_96Ozp0UHjx4fL_3eB9ClwTfESzElFBOYp6Kz6nSiZ7BERofRsdojDNGY5GJdITOQlhjjFNB01M0oiRJsEjIGC1f1FcNbWEi67yBqF2B89vIuEoXNeTRd9Guok2nQhE3yvdcCVGA0sbG1aEILdRttPiIKmhXLj9HJ1aVAS72fYLeHx_e5k_x8nXxPL9fxoZy0cYacyqUIYpqyBlnBuscUqLyLDPY8hkTXOeaK6aFtoQlzFKj2MwINSOZoYZO0M2wt_Fu00FoZVUEA2WpanBdkEmSMk5ZSpMexQNqvAvBg5WNLyrlt5JguXMod8LkTpgcHPaRq_32TleQHwK_0nrgegAK18i163zdPytN1RMyxX0xhqlsctuTt3-Q_17-AcpNiYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245635432</pqid></control><display><type>article</type><title>Magnetic force theory combined with quasi-particle self-consistent GW method</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yoon, Hongkee ; Jang, Seung Woo ; Sim, Jae-Hoon ; Kotani, Takao ; Han, Myung Joon</creator><creatorcontrib>Yoon, Hongkee ; Jang, Seung Woo ; Sim, Jae-Hoon ; Kotani, Takao ; Han, Myung Joon</creatorcontrib><description>We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this combination provides a way to investigate the effect of GW self-energy on the magnetic interactions which can hardly be quantified due to the limitation of current GW methodology in calculating the total energy difference in between different magnetic phases. In ferromagnetic 3d elements, GW self-energy slightly reduces the d bandwidth and enhances the interactions while the same long-range feature is maintained. In antiferromagnetic transition-metal monoxides, QSGW significantly reduces the interaction strengths by enlarging the gap. Orbital-dependent magnetic force calculations show that the coupling between eg and the nominally-empty 4s orbital is noticeably large in MnO which is reminiscent of the discussion for cuprates regarding the role of Cu-4s state. This combination of magnetic force theory with quasiparticle self-consistent GW can be a useful tool to study various magnetic materials.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab2b7e</identifier><identifier>PMID: 31220821</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>density functional theory ; magnetic force theory ; quasiparticle self-consistent GW</subject><ispartof>Journal of physics. Condensed matter, 2019-10, Vol.31 (40), p.405503-405503</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b0638ac1a3bed565c0bde41ad99c0f67586bdb6a5b8bf1525f3ca57c8a719c3c3</citedby><cites>FETCH-LOGICAL-c368t-b0638ac1a3bed565c0bde41ad99c0f67586bdb6a5b8bf1525f3ca57c8a719c3c3</cites><orcidid>0000-0002-8089-7991 ; 0000-0003-4821-6743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ab2b7e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31220821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Hongkee</creatorcontrib><creatorcontrib>Jang, Seung Woo</creatorcontrib><creatorcontrib>Sim, Jae-Hoon</creatorcontrib><creatorcontrib>Kotani, Takao</creatorcontrib><creatorcontrib>Han, Myung Joon</creatorcontrib><title>Magnetic force theory combined with quasi-particle self-consistent GW method</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this combination provides a way to investigate the effect of GW self-energy on the magnetic interactions which can hardly be quantified due to the limitation of current GW methodology in calculating the total energy difference in between different magnetic phases. In ferromagnetic 3d elements, GW self-energy slightly reduces the d bandwidth and enhances the interactions while the same long-range feature is maintained. In antiferromagnetic transition-metal monoxides, QSGW significantly reduces the interaction strengths by enlarging the gap. Orbital-dependent magnetic force calculations show that the coupling between eg and the nominally-empty 4s orbital is noticeably large in MnO which is reminiscent of the discussion for cuprates regarding the role of Cu-4s state. This combination of magnetic force theory with quasiparticle self-consistent GW can be a useful tool to study various magnetic materials.</description><subject>density functional theory</subject><subject>magnetic force theory</subject><subject>quasiparticle self-consistent GW</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4Mobk7vnqQ3PViXNE2WHmXoFCZeFL2FJH1xHW3TJS2y_96Ozp0UHjx4fL_3eB9ClwTfESzElFBOYp6Kz6nSiZ7BERofRsdojDNGY5GJdITOQlhjjFNB01M0oiRJsEjIGC1f1FcNbWEi67yBqF2B89vIuEoXNeTRd9Guok2nQhE3yvdcCVGA0sbG1aEILdRttPiIKmhXLj9HJ1aVAS72fYLeHx_e5k_x8nXxPL9fxoZy0cYacyqUIYpqyBlnBuscUqLyLDPY8hkTXOeaK6aFtoQlzFKj2MwINSOZoYZO0M2wt_Fu00FoZVUEA2WpanBdkEmSMk5ZSpMexQNqvAvBg5WNLyrlt5JguXMod8LkTpgcHPaRq_32TleQHwK_0nrgegAK18i163zdPytN1RMyxX0xhqlsctuTt3-Q_17-AcpNiYU</recordid><startdate>20191009</startdate><enddate>20191009</enddate><creator>Yoon, Hongkee</creator><creator>Jang, Seung Woo</creator><creator>Sim, Jae-Hoon</creator><creator>Kotani, Takao</creator><creator>Han, Myung Joon</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8089-7991</orcidid><orcidid>https://orcid.org/0000-0003-4821-6743</orcidid></search><sort><creationdate>20191009</creationdate><title>Magnetic force theory combined with quasi-particle self-consistent GW method</title><author>Yoon, Hongkee ; Jang, Seung Woo ; Sim, Jae-Hoon ; Kotani, Takao ; Han, Myung Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b0638ac1a3bed565c0bde41ad99c0f67586bdb6a5b8bf1525f3ca57c8a719c3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>density functional theory</topic><topic>magnetic force theory</topic><topic>quasiparticle self-consistent GW</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Hongkee</creatorcontrib><creatorcontrib>Jang, Seung Woo</creatorcontrib><creatorcontrib>Sim, Jae-Hoon</creatorcontrib><creatorcontrib>Kotani, Takao</creatorcontrib><creatorcontrib>Han, Myung Joon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Hongkee</au><au>Jang, Seung Woo</au><au>Sim, Jae-Hoon</au><au>Kotani, Takao</au><au>Han, Myung Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic force theory combined with quasi-particle self-consistent GW method</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2019-10-09</date><risdate>2019</risdate><volume>31</volume><issue>40</issue><spage>405503</spage><epage>405503</epage><pages>405503-405503</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this combination provides a way to investigate the effect of GW self-energy on the magnetic interactions which can hardly be quantified due to the limitation of current GW methodology in calculating the total energy difference in between different magnetic phases. In ferromagnetic 3d elements, GW self-energy slightly reduces the d bandwidth and enhances the interactions while the same long-range feature is maintained. In antiferromagnetic transition-metal monoxides, QSGW significantly reduces the interaction strengths by enlarging the gap. Orbital-dependent magnetic force calculations show that the coupling between eg and the nominally-empty 4s orbital is noticeably large in MnO which is reminiscent of the discussion for cuprates regarding the role of Cu-4s state. This combination of magnetic force theory with quasiparticle self-consistent GW can be a useful tool to study various magnetic materials.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31220821</pmid><doi>10.1088/1361-648X/ab2b7e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8089-7991</orcidid><orcidid>https://orcid.org/0000-0003-4821-6743</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2019-10, Vol.31 (40), p.405503-405503 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_pubmed_primary_31220821 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | density functional theory magnetic force theory quasiparticle self-consistent GW |
title | Magnetic force theory combined with quasi-particle self-consistent GW method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20force%20theory%20combined%20with%20quasi-particle%20self-consistent%20GW%20method&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Yoon,%20Hongkee&rft.date=2019-10-09&rft.volume=31&rft.issue=40&rft.spage=405503&rft.epage=405503&rft.pages=405503-405503&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab2b7e&rft_dat=%3Cproquest_pubme%3E2245635432%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245635432&rft_id=info:pmid/31220821&rfr_iscdi=true |