A Deep Learning Approach for Multi-Frame In-Loop Filter of HEVC

An extensive study on the in-loop filter has been proposed for a high efficiency video coding (HEVC) standard to reduce compression artifacts, thus improving coding efficiency. However, in the existing approaches, the in-loop filter is always applied to each single frame, without exploiting the cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2019-11, Vol.28 (11), p.5663-5678
Hauptverfasser: Li, Tianyi, Xu, Mai, Zhu, Ce, Yang, Ren, Wang, Zulin, Guan, Zhenyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5678
container_issue 11
container_start_page 5663
container_title IEEE transactions on image processing
container_volume 28
creator Li, Tianyi
Xu, Mai
Zhu, Ce
Yang, Ren
Wang, Zulin
Guan, Zhenyu
description An extensive study on the in-loop filter has been proposed for a high efficiency video coding (HEVC) standard to reduce compression artifacts, thus improving coding efficiency. However, in the existing approaches, the in-loop filter is always applied to each single frame, without exploiting the content correlation among multiple frames. In this paper, we propose a multi-frame in-loop filter (MIF) for HEVC, which enhances the visual quality of each encoded frame by leveraging its adjacent frames. Specifically, we first construct a large-scale database containing encoded frames and their corresponding raw frames of a variety of content, which can be used to learn the in-loop filter in HEVC. Furthermore, we find that there usually exist a number of reference frames of higher quality and of similar content for an encoded frame. Accordingly, a reference frame selector (RFS) is designed to identify these frames. Then, a deep neural network for MIF (known as MIF-Net) is developed to enhance the quality of each encoded frame by utilizing the spatial information of this frame and the temporal information of its neighboring higher-quality frames. The MIF-Net is built on the recently developed DenseNet, benefiting from its improved generalization capacity and computational efficiency. In addition, a novel block-adaptive convolutional layer is designed and applied in the MIF-Net, for handling the artifacts influenced by coding tree unit (CTU) structure in HEVC. Extensive experiments show that our MIF approach achieves on average 11.621% saving of the Bjøntegaard delta bit-rate (BD-BR) on the standard test set, significantly outperforming the standard in-loop filter in HEVC and other state-of-the-art approaches.
doi_str_mv 10.1109/TIP.2019.2921877
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_31217108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8736997</ieee_id><sourcerecordid>2283322080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-4a1f722e46a4fccc6618cab9849ce238e76635d12ca2d462d7306ceb61e0941e3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlbvgiABL162ZpI02Zyk1NYWKnqoXpc0O6tb9sts9-C_N6W1B08zMM87zDyEXAMbAjDzsFq8DTkDM-SGQ6z1CemDkRAxJvlp6NlIRxqk6ZGLtt0wBnIE6pz0BHDQwOI-eRzTJ8SGLtH6Kq8-6bhpfG3dF81qT1-6YptHM29LpIsqWtZ1Q2d5sUVP64zOpx-TS3KW2aLFq0MdkPfZdDWZR8vX58VkvIyckHobSQuZ5hylsjJzzikFsbNrE0vjkIsYtVJilAJ3lqdS8VQLphyuFSALD6EYkPv93nDdd4ftNinz1mFR2Arrrk04lxJEcCIDevcP3dSdr8J1gYqF4JzFLFBsTzlft63HLGl8Xlr_kwBLdnKTIDfZyU0OckPk9rC4W5eYHgN_NgNwswdyRDyOYy2UMVr8AseYeaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283322080</pqid></control><display><type>article</type><title>A Deep Learning Approach for Multi-Frame In-Loop Filter of HEVC</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Tianyi ; Xu, Mai ; Zhu, Ce ; Yang, Ren ; Wang, Zulin ; Guan, Zhenyu</creator><creatorcontrib>Li, Tianyi ; Xu, Mai ; Zhu, Ce ; Yang, Ren ; Wang, Zulin ; Guan, Zhenyu</creatorcontrib><description>An extensive study on the in-loop filter has been proposed for a high efficiency video coding (HEVC) standard to reduce compression artifacts, thus improving coding efficiency. However, in the existing approaches, the in-loop filter is always applied to each single frame, without exploiting the content correlation among multiple frames. In this paper, we propose a multi-frame in-loop filter (MIF) for HEVC, which enhances the visual quality of each encoded frame by leveraging its adjacent frames. Specifically, we first construct a large-scale database containing encoded frames and their corresponding raw frames of a variety of content, which can be used to learn the in-loop filter in HEVC. Furthermore, we find that there usually exist a number of reference frames of higher quality and of similar content for an encoded frame. Accordingly, a reference frame selector (RFS) is designed to identify these frames. Then, a deep neural network for MIF (known as MIF-Net) is developed to enhance the quality of each encoded frame by utilizing the spatial information of this frame and the temporal information of its neighboring higher-quality frames. The MIF-Net is built on the recently developed DenseNet, benefiting from its improved generalization capacity and computational efficiency. In addition, a novel block-adaptive convolutional layer is designed and applied in the MIF-Net, for handling the artifacts influenced by coding tree unit (CTU) structure in HEVC. Extensive experiments show that our MIF approach achieves on average 11.621% saving of the Bjøntegaard delta bit-rate (BD-BR) on the standard test set, significantly outperforming the standard in-loop filter in HEVC and other state-of-the-art approaches.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2921877</identifier><identifier>PMID: 31217108</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Coding ; Deep learning ; Efficiency ; Encoding ; Frames (data processing) ; High efficiency video coding ; Image coding ; in-loop filter ; Learning systems ; multiple frames ; Radio frequency ; Spatial data ; Video coding ; Video compression</subject><ispartof>IEEE transactions on image processing, 2019-11, Vol.28 (11), p.5663-5678</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-4a1f722e46a4fccc6618cab9849ce238e76635d12ca2d462d7306ceb61e0941e3</citedby><cites>FETCH-LOGICAL-c347t-4a1f722e46a4fccc6618cab9849ce238e76635d12ca2d462d7306ceb61e0941e3</cites><orcidid>0000-0002-0277-3301 ; 0000-0003-4124-4186 ; 0000-0001-7038-7798 ; 0000-0001-7607-707X ; 0000-0002-3959-338X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8736997$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8736997$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31217108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tianyi</creatorcontrib><creatorcontrib>Xu, Mai</creatorcontrib><creatorcontrib>Zhu, Ce</creatorcontrib><creatorcontrib>Yang, Ren</creatorcontrib><creatorcontrib>Wang, Zulin</creatorcontrib><creatorcontrib>Guan, Zhenyu</creatorcontrib><title>A Deep Learning Approach for Multi-Frame In-Loop Filter of HEVC</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>An extensive study on the in-loop filter has been proposed for a high efficiency video coding (HEVC) standard to reduce compression artifacts, thus improving coding efficiency. However, in the existing approaches, the in-loop filter is always applied to each single frame, without exploiting the content correlation among multiple frames. In this paper, we propose a multi-frame in-loop filter (MIF) for HEVC, which enhances the visual quality of each encoded frame by leveraging its adjacent frames. Specifically, we first construct a large-scale database containing encoded frames and their corresponding raw frames of a variety of content, which can be used to learn the in-loop filter in HEVC. Furthermore, we find that there usually exist a number of reference frames of higher quality and of similar content for an encoded frame. Accordingly, a reference frame selector (RFS) is designed to identify these frames. Then, a deep neural network for MIF (known as MIF-Net) is developed to enhance the quality of each encoded frame by utilizing the spatial information of this frame and the temporal information of its neighboring higher-quality frames. The MIF-Net is built on the recently developed DenseNet, benefiting from its improved generalization capacity and computational efficiency. In addition, a novel block-adaptive convolutional layer is designed and applied in the MIF-Net, for handling the artifacts influenced by coding tree unit (CTU) structure in HEVC. Extensive experiments show that our MIF approach achieves on average 11.621% saving of the Bjøntegaard delta bit-rate (BD-BR) on the standard test set, significantly outperforming the standard in-loop filter in HEVC and other state-of-the-art approaches.</description><subject>Artificial neural networks</subject><subject>Coding</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Encoding</subject><subject>Frames (data processing)</subject><subject>High efficiency video coding</subject><subject>Image coding</subject><subject>in-loop filter</subject><subject>Learning systems</subject><subject>multiple frames</subject><subject>Radio frequency</subject><subject>Spatial data</subject><subject>Video coding</subject><subject>Video compression</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMotlbvgiABL162ZpI02Zyk1NYWKnqoXpc0O6tb9sts9-C_N6W1B08zMM87zDyEXAMbAjDzsFq8DTkDM-SGQ6z1CemDkRAxJvlp6NlIRxqk6ZGLtt0wBnIE6pz0BHDQwOI-eRzTJ8SGLtH6Kq8-6bhpfG3dF81qT1-6YptHM29LpIsqWtZ1Q2d5sUVP64zOpx-TS3KW2aLFq0MdkPfZdDWZR8vX58VkvIyckHobSQuZ5hylsjJzzikFsbNrE0vjkIsYtVJilAJ3lqdS8VQLphyuFSALD6EYkPv93nDdd4ftNinz1mFR2Arrrk04lxJEcCIDevcP3dSdr8J1gYqF4JzFLFBsTzlft63HLGl8Xlr_kwBLdnKTIDfZyU0OckPk9rC4W5eYHgN_NgNwswdyRDyOYy2UMVr8AseYeaY</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Li, Tianyi</creator><creator>Xu, Mai</creator><creator>Zhu, Ce</creator><creator>Yang, Ren</creator><creator>Wang, Zulin</creator><creator>Guan, Zhenyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0277-3301</orcidid><orcidid>https://orcid.org/0000-0003-4124-4186</orcidid><orcidid>https://orcid.org/0000-0001-7038-7798</orcidid><orcidid>https://orcid.org/0000-0001-7607-707X</orcidid><orcidid>https://orcid.org/0000-0002-3959-338X</orcidid></search><sort><creationdate>20191101</creationdate><title>A Deep Learning Approach for Multi-Frame In-Loop Filter of HEVC</title><author>Li, Tianyi ; Xu, Mai ; Zhu, Ce ; Yang, Ren ; Wang, Zulin ; Guan, Zhenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-4a1f722e46a4fccc6618cab9849ce238e76635d12ca2d462d7306ceb61e0941e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Coding</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Encoding</topic><topic>Frames (data processing)</topic><topic>High efficiency video coding</topic><topic>Image coding</topic><topic>in-loop filter</topic><topic>Learning systems</topic><topic>multiple frames</topic><topic>Radio frequency</topic><topic>Spatial data</topic><topic>Video coding</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tianyi</creatorcontrib><creatorcontrib>Xu, Mai</creatorcontrib><creatorcontrib>Zhu, Ce</creatorcontrib><creatorcontrib>Yang, Ren</creatorcontrib><creatorcontrib>Wang, Zulin</creatorcontrib><creatorcontrib>Guan, Zhenyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Tianyi</au><au>Xu, Mai</au><au>Zhu, Ce</au><au>Yang, Ren</au><au>Wang, Zulin</au><au>Guan, Zhenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Approach for Multi-Frame In-Loop Filter of HEVC</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>28</volume><issue>11</issue><spage>5663</spage><epage>5678</epage><pages>5663-5678</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>An extensive study on the in-loop filter has been proposed for a high efficiency video coding (HEVC) standard to reduce compression artifacts, thus improving coding efficiency. However, in the existing approaches, the in-loop filter is always applied to each single frame, without exploiting the content correlation among multiple frames. In this paper, we propose a multi-frame in-loop filter (MIF) for HEVC, which enhances the visual quality of each encoded frame by leveraging its adjacent frames. Specifically, we first construct a large-scale database containing encoded frames and their corresponding raw frames of a variety of content, which can be used to learn the in-loop filter in HEVC. Furthermore, we find that there usually exist a number of reference frames of higher quality and of similar content for an encoded frame. Accordingly, a reference frame selector (RFS) is designed to identify these frames. Then, a deep neural network for MIF (known as MIF-Net) is developed to enhance the quality of each encoded frame by utilizing the spatial information of this frame and the temporal information of its neighboring higher-quality frames. The MIF-Net is built on the recently developed DenseNet, benefiting from its improved generalization capacity and computational efficiency. In addition, a novel block-adaptive convolutional layer is designed and applied in the MIF-Net, for handling the artifacts influenced by coding tree unit (CTU) structure in HEVC. Extensive experiments show that our MIF approach achieves on average 11.621% saving of the Bjøntegaard delta bit-rate (BD-BR) on the standard test set, significantly outperforming the standard in-loop filter in HEVC and other state-of-the-art approaches.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31217108</pmid><doi>10.1109/TIP.2019.2921877</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0277-3301</orcidid><orcidid>https://orcid.org/0000-0003-4124-4186</orcidid><orcidid>https://orcid.org/0000-0001-7038-7798</orcidid><orcidid>https://orcid.org/0000-0001-7607-707X</orcidid><orcidid>https://orcid.org/0000-0002-3959-338X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-11, Vol.28 (11), p.5663-5678
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_31217108
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Coding
Deep learning
Efficiency
Encoding
Frames (data processing)
High efficiency video coding
Image coding
in-loop filter
Learning systems
multiple frames
Radio frequency
Spatial data
Video coding
Video compression
title A Deep Learning Approach for Multi-Frame In-Loop Filter of HEVC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Approach%20for%20Multi-Frame%20In-Loop%20Filter%20of%20HEVC&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Tianyi&rft.date=2019-11-01&rft.volume=28&rft.issue=11&rft.spage=5663&rft.epage=5678&rft.pages=5663-5678&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2921877&rft_dat=%3Cproquest_RIE%3E2283322080%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283322080&rft_id=info:pmid/31217108&rft_ieee_id=8736997&rfr_iscdi=true