GABARAPs and LC3s have opposite roles in regulating ULK1 for autophagy induction

ULK1 (unc-51 like autophagy activating kinase 1) is the key mediator of MTORC1 signaling to macroautophagy/autophagy. ULK1 functions as a protein complex by interacting with ATG13, RB1CC1/FIP200, and ATG101. How the ULK1 complex is regulated to trigger autophagy induction remains unclear. In this st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autophagy 2020-04, Vol.16 (4), p.600-614
Hauptverfasser: Grunwald, Douglas S., Otto, Neil Michael, Park, Ji-Man, Song, Daihyun, Kim, Do-Hyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue 4
container_start_page 600
container_title Autophagy
container_volume 16
creator Grunwald, Douglas S.
Otto, Neil Michael
Park, Ji-Man
Song, Daihyun
Kim, Do-Hyung
description ULK1 (unc-51 like autophagy activating kinase 1) is the key mediator of MTORC1 signaling to macroautophagy/autophagy. ULK1 functions as a protein complex by interacting with ATG13, RB1CC1/FIP200, and ATG101. How the ULK1 complex is regulated to trigger autophagy induction remains unclear. In this study, we have determined roles of Atg8-family proteins (ATG8s) in regulating ULK1 activity and autophagy. Using human cells depleted of each subfamily of ATG8, we found that the GABARAP subfamily positively regulates ULK1 activity and phagophore and autophagosome formation in response to starvation. In contrast, the LC3 subfamily negatively regulates ULK1 activity and phagophore formation. By reconstituting ATG8-depleted cells with individual ATG8 members, we identified GABARAP and GABARAPL1 as positive and LC3B and LC3C as negative regulators of ULK1 activity. To address the role of ATG8 binding to ULK1, we mutated the LIR of endogenous ULK1 to disrupt the ATG8-ULK1 interaction by genome editing. The mutation drastically reduced the activity of ULK1, autophagic degradation of SQSTM1, and phagophore formation in response to starvation. The mutation also suppressed the formation and turnover of autophagosomes in response to starvation. Similar to the mutation of the ULK1 LIR, disruption of the ATG13-ATG8 interaction suppressed ULK1 activity and autophagosome formation. In contrast, RB1CC1 did not show any specific binding to ATG8s, and mutation of its LIR did not affect ULK1 activity. Together, this study demonstrates differential binding and opposite regulation of the ULK1 complex by GABARAPs and LC3s, and an important role of the ULK1- and ATG13-ATG8 interactions in autophagy induction. Abbreviations: ATG5: autophagy related 5; ATG7: autophagy related 7; ATG8: autophagy related 8; ATG13: autophagy related 13; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; ATG101: autophagy related 101; BAFA1: bafilomycin A 1 ; BECN1: beclin 1; Cas9: CRISPR associated protein 9; CRISPR: clustered regularly interspaced short palindromic repeats; EBSS: earle's balanced salt solution; DAPI: 4ʹ-6-diamidino-2-phenylindole; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor-associated protein like 1; GABARAPL2: GABA type A receptor-associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescence protein; gRNA: guide RNA; KI: kinase inactive mutant; KO: knockout; LC3A: microtubule associated protein 1
doi_str_mv 10.1080/15548627.2019.1632620
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31208283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242821085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-3d57241064cbf59633e58d94e6c090dcf26eca17ed58ecfcc365ae447f3a260d3</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhS0EoqXwE0A-ckmwx2uv94JIIyiISK0qerZcezYx2tiLvVuUf89GSSN66ckjzzdvRu8R8p6zOWeafeJSVlpBPQfGmzlXAhSwF-R8_z_TSsiXpxrqM_KmlN-MCaUbeE3OBAemQYtzcnO1uFzcLm4KtdHT1VIUurEPSFPfpxIGpDl1WGiINON67OwQ4prerX5y2qZM7TikfmPXuwnwoxtCim_Jq9Z2Bd8d3wty9-3rr-X32er66sdysZq5SulhJrysoeJMVe6-lY0SAqX2TYXKsYZ514JCZ3mNXmp0rXNCSYtVVbfCgmJeXJDPB91-vN-idxiHbDvT57C1eWeSDeZpJ4aNWacHU3OhgcEk8PEokNOfEctgtqE47DobMY3FAFSgYfJaTqg8oC6nUjK2pzWcmX0a5jENs0_DHNOY5j78f-Np6tH-CfhyAEKc7Nzavyl33gx216XcZhtdKBP87I5_BxGZgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242821085</pqid></control><display><type>article</type><title>GABARAPs and LC3s have opposite roles in regulating ULK1 for autophagy induction</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Grunwald, Douglas S. ; Otto, Neil Michael ; Park, Ji-Man ; Song, Daihyun ; Kim, Do-Hyung</creator><creatorcontrib>Grunwald, Douglas S. ; Otto, Neil Michael ; Park, Ji-Man ; Song, Daihyun ; Kim, Do-Hyung</creatorcontrib><description>ULK1 (unc-51 like autophagy activating kinase 1) is the key mediator of MTORC1 signaling to macroautophagy/autophagy. ULK1 functions as a protein complex by interacting with ATG13, RB1CC1/FIP200, and ATG101. How the ULK1 complex is regulated to trigger autophagy induction remains unclear. In this study, we have determined roles of Atg8-family proteins (ATG8s) in regulating ULK1 activity and autophagy. Using human cells depleted of each subfamily of ATG8, we found that the GABARAP subfamily positively regulates ULK1 activity and phagophore and autophagosome formation in response to starvation. In contrast, the LC3 subfamily negatively regulates ULK1 activity and phagophore formation. By reconstituting ATG8-depleted cells with individual ATG8 members, we identified GABARAP and GABARAPL1 as positive and LC3B and LC3C as negative regulators of ULK1 activity. To address the role of ATG8 binding to ULK1, we mutated the LIR of endogenous ULK1 to disrupt the ATG8-ULK1 interaction by genome editing. The mutation drastically reduced the activity of ULK1, autophagic degradation of SQSTM1, and phagophore formation in response to starvation. The mutation also suppressed the formation and turnover of autophagosomes in response to starvation. Similar to the mutation of the ULK1 LIR, disruption of the ATG13-ATG8 interaction suppressed ULK1 activity and autophagosome formation. In contrast, RB1CC1 did not show any specific binding to ATG8s, and mutation of its LIR did not affect ULK1 activity. Together, this study demonstrates differential binding and opposite regulation of the ULK1 complex by GABARAPs and LC3s, and an important role of the ULK1- and ATG13-ATG8 interactions in autophagy induction. Abbreviations: ATG5: autophagy related 5; ATG7: autophagy related 7; ATG8: autophagy related 8; ATG13: autophagy related 13; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; ATG101: autophagy related 101; BAFA1: bafilomycin A 1 ; BECN1: beclin 1; Cas9: CRISPR associated protein 9; CRISPR: clustered regularly interspaced short palindromic repeats; EBSS: earle's balanced salt solution; DAPI: 4ʹ-6-diamidino-2-phenylindole; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor-associated protein like 1; GABARAPL2: GABA type A receptor-associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescence protein; gRNA: guide RNA; KI: kinase inactive mutant; KO: knockout; LC3A: microtubule associated protein 1 light chain 3 alpha; LC3B: microtubule associated protein 1 light chain 3 beta; LC3C: microtubule associated protein 1 light chain 3 gamma; LIR: LC3-interacting region; MTORC1: mechanistic target of rapamycin kinase complex 1; PBS: phosphate buffered saline; PCR: polymerase chain reaction; PE: phosphatidylethanolamine; PtdIns3P: phosphatidylinositol-3-phosphate; qPCR: quantitative PCR; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RPS6KB1: ribosomal protein S6 kinase B1; SEM: standard error of the mean; SQSTM1/p62: sequestosome 1; TALEN: transcription activator-like effector nuclease; TUBA: tubulin alpha; ULK1: unc-51 like autophagy activating kinase 1; WB: western blotting; WIPI2: WD repeat domain phosphoinositide interacting 2; WT: wild type.</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.1080/15548627.2019.1632620</identifier><identifier>PMID: 31208283</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Apoptosis Regulatory Proteins - metabolism ; ATG8 ; Autophagosomes - metabolism ; Autophagy - physiology ; Autophagy-Related Protein-1 Homolog - genetics ; Autophagy-Related Protein-1 Homolog - metabolism ; Autophagy-Related Proteins - metabolism ; Class III Phosphatidylinositol 3-Kinases - metabolism ; GABARAP ; Humans ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; LC3 ; LIR ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Research Paper ; ULK1</subject><ispartof>Autophagy, 2020-04, Vol.16 (4), p.600-614</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-3d57241064cbf59633e58d94e6c090dcf26eca17ed58ecfcc365ae447f3a260d3</citedby><cites>FETCH-LOGICAL-c468t-3d57241064cbf59633e58d94e6c090dcf26eca17ed58ecfcc365ae447f3a260d3</cites><orcidid>0000-0002-2924-4370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138202/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138202/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31208283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grunwald, Douglas S.</creatorcontrib><creatorcontrib>Otto, Neil Michael</creatorcontrib><creatorcontrib>Park, Ji-Man</creatorcontrib><creatorcontrib>Song, Daihyun</creatorcontrib><creatorcontrib>Kim, Do-Hyung</creatorcontrib><title>GABARAPs and LC3s have opposite roles in regulating ULK1 for autophagy induction</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>ULK1 (unc-51 like autophagy activating kinase 1) is the key mediator of MTORC1 signaling to macroautophagy/autophagy. ULK1 functions as a protein complex by interacting with ATG13, RB1CC1/FIP200, and ATG101. How the ULK1 complex is regulated to trigger autophagy induction remains unclear. In this study, we have determined roles of Atg8-family proteins (ATG8s) in regulating ULK1 activity and autophagy. Using human cells depleted of each subfamily of ATG8, we found that the GABARAP subfamily positively regulates ULK1 activity and phagophore and autophagosome formation in response to starvation. In contrast, the LC3 subfamily negatively regulates ULK1 activity and phagophore formation. By reconstituting ATG8-depleted cells with individual ATG8 members, we identified GABARAP and GABARAPL1 as positive and LC3B and LC3C as negative regulators of ULK1 activity. To address the role of ATG8 binding to ULK1, we mutated the LIR of endogenous ULK1 to disrupt the ATG8-ULK1 interaction by genome editing. The mutation drastically reduced the activity of ULK1, autophagic degradation of SQSTM1, and phagophore formation in response to starvation. The mutation also suppressed the formation and turnover of autophagosomes in response to starvation. Similar to the mutation of the ULK1 LIR, disruption of the ATG13-ATG8 interaction suppressed ULK1 activity and autophagosome formation. In contrast, RB1CC1 did not show any specific binding to ATG8s, and mutation of its LIR did not affect ULK1 activity. Together, this study demonstrates differential binding and opposite regulation of the ULK1 complex by GABARAPs and LC3s, and an important role of the ULK1- and ATG13-ATG8 interactions in autophagy induction. Abbreviations: ATG5: autophagy related 5; ATG7: autophagy related 7; ATG8: autophagy related 8; ATG13: autophagy related 13; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; ATG101: autophagy related 101; BAFA1: bafilomycin A 1 ; BECN1: beclin 1; Cas9: CRISPR associated protein 9; CRISPR: clustered regularly interspaced short palindromic repeats; EBSS: earle's balanced salt solution; DAPI: 4ʹ-6-diamidino-2-phenylindole; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor-associated protein like 1; GABARAPL2: GABA type A receptor-associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescence protein; gRNA: guide RNA; KI: kinase inactive mutant; KO: knockout; LC3A: microtubule associated protein 1 light chain 3 alpha; LC3B: microtubule associated protein 1 light chain 3 beta; LC3C: microtubule associated protein 1 light chain 3 gamma; LIR: LC3-interacting region; MTORC1: mechanistic target of rapamycin kinase complex 1; PBS: phosphate buffered saline; PCR: polymerase chain reaction; PE: phosphatidylethanolamine; PtdIns3P: phosphatidylinositol-3-phosphate; qPCR: quantitative PCR; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RPS6KB1: ribosomal protein S6 kinase B1; SEM: standard error of the mean; SQSTM1/p62: sequestosome 1; TALEN: transcription activator-like effector nuclease; TUBA: tubulin alpha; ULK1: unc-51 like autophagy activating kinase 1; WB: western blotting; WIPI2: WD repeat domain phosphoinositide interacting 2; WT: wild type.</description><subject>Apoptosis Regulatory Proteins - metabolism</subject><subject>ATG8</subject><subject>Autophagosomes - metabolism</subject><subject>Autophagy - physiology</subject><subject>Autophagy-Related Protein-1 Homolog - genetics</subject><subject>Autophagy-Related Protein-1 Homolog - metabolism</subject><subject>Autophagy-Related Proteins - metabolism</subject><subject>Class III Phosphatidylinositol 3-Kinases - metabolism</subject><subject>GABARAP</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>LC3</subject><subject>LIR</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Research Paper</subject><subject>ULK1</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFvEzEQhS0EoqXwE0A-ckmwx2uv94JIIyiISK0qerZcezYx2tiLvVuUf89GSSN66ckjzzdvRu8R8p6zOWeafeJSVlpBPQfGmzlXAhSwF-R8_z_TSsiXpxrqM_KmlN-MCaUbeE3OBAemQYtzcnO1uFzcLm4KtdHT1VIUurEPSFPfpxIGpDl1WGiINON67OwQ4prerX5y2qZM7TikfmPXuwnwoxtCim_Jq9Z2Bd8d3wty9-3rr-X32er66sdysZq5SulhJrysoeJMVe6-lY0SAqX2TYXKsYZ514JCZ3mNXmp0rXNCSYtVVbfCgmJeXJDPB91-vN-idxiHbDvT57C1eWeSDeZpJ4aNWacHU3OhgcEk8PEokNOfEctgtqE47DobMY3FAFSgYfJaTqg8oC6nUjK2pzWcmX0a5jENs0_DHNOY5j78f-Np6tH-CfhyAEKc7Nzavyl33gx216XcZhtdKBP87I5_BxGZgg</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Grunwald, Douglas S.</creator><creator>Otto, Neil Michael</creator><creator>Park, Ji-Man</creator><creator>Song, Daihyun</creator><creator>Kim, Do-Hyung</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2924-4370</orcidid></search><sort><creationdate>20200402</creationdate><title>GABARAPs and LC3s have opposite roles in regulating ULK1 for autophagy induction</title><author>Grunwald, Douglas S. ; Otto, Neil Michael ; Park, Ji-Man ; Song, Daihyun ; Kim, Do-Hyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-3d57241064cbf59633e58d94e6c090dcf26eca17ed58ecfcc365ae447f3a260d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apoptosis Regulatory Proteins - metabolism</topic><topic>ATG8</topic><topic>Autophagosomes - metabolism</topic><topic>Autophagy - physiology</topic><topic>Autophagy-Related Protein-1 Homolog - genetics</topic><topic>Autophagy-Related Protein-1 Homolog - metabolism</topic><topic>Autophagy-Related Proteins - metabolism</topic><topic>Class III Phosphatidylinositol 3-Kinases - metabolism</topic><topic>GABARAP</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>LC3</topic><topic>LIR</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Research Paper</topic><topic>ULK1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grunwald, Douglas S.</creatorcontrib><creatorcontrib>Otto, Neil Michael</creatorcontrib><creatorcontrib>Park, Ji-Man</creatorcontrib><creatorcontrib>Song, Daihyun</creatorcontrib><creatorcontrib>Kim, Do-Hyung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grunwald, Douglas S.</au><au>Otto, Neil Michael</au><au>Park, Ji-Man</au><au>Song, Daihyun</au><au>Kim, Do-Hyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GABARAPs and LC3s have opposite roles in regulating ULK1 for autophagy induction</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2020-04-02</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>600</spage><epage>614</epage><pages>600-614</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>ULK1 (unc-51 like autophagy activating kinase 1) is the key mediator of MTORC1 signaling to macroautophagy/autophagy. ULK1 functions as a protein complex by interacting with ATG13, RB1CC1/FIP200, and ATG101. How the ULK1 complex is regulated to trigger autophagy induction remains unclear. In this study, we have determined roles of Atg8-family proteins (ATG8s) in regulating ULK1 activity and autophagy. Using human cells depleted of each subfamily of ATG8, we found that the GABARAP subfamily positively regulates ULK1 activity and phagophore and autophagosome formation in response to starvation. In contrast, the LC3 subfamily negatively regulates ULK1 activity and phagophore formation. By reconstituting ATG8-depleted cells with individual ATG8 members, we identified GABARAP and GABARAPL1 as positive and LC3B and LC3C as negative regulators of ULK1 activity. To address the role of ATG8 binding to ULK1, we mutated the LIR of endogenous ULK1 to disrupt the ATG8-ULK1 interaction by genome editing. The mutation drastically reduced the activity of ULK1, autophagic degradation of SQSTM1, and phagophore formation in response to starvation. The mutation also suppressed the formation and turnover of autophagosomes in response to starvation. Similar to the mutation of the ULK1 LIR, disruption of the ATG13-ATG8 interaction suppressed ULK1 activity and autophagosome formation. In contrast, RB1CC1 did not show any specific binding to ATG8s, and mutation of its LIR did not affect ULK1 activity. Together, this study demonstrates differential binding and opposite regulation of the ULK1 complex by GABARAPs and LC3s, and an important role of the ULK1- and ATG13-ATG8 interactions in autophagy induction. Abbreviations: ATG5: autophagy related 5; ATG7: autophagy related 7; ATG8: autophagy related 8; ATG13: autophagy related 13; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; ATG101: autophagy related 101; BAFA1: bafilomycin A 1 ; BECN1: beclin 1; Cas9: CRISPR associated protein 9; CRISPR: clustered regularly interspaced short palindromic repeats; EBSS: earle's balanced salt solution; DAPI: 4ʹ-6-diamidino-2-phenylindole; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor-associated protein like 1; GABARAPL2: GABA type A receptor-associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescence protein; gRNA: guide RNA; KI: kinase inactive mutant; KO: knockout; LC3A: microtubule associated protein 1 light chain 3 alpha; LC3B: microtubule associated protein 1 light chain 3 beta; LC3C: microtubule associated protein 1 light chain 3 gamma; LIR: LC3-interacting region; MTORC1: mechanistic target of rapamycin kinase complex 1; PBS: phosphate buffered saline; PCR: polymerase chain reaction; PE: phosphatidylethanolamine; PtdIns3P: phosphatidylinositol-3-phosphate; qPCR: quantitative PCR; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RPS6KB1: ribosomal protein S6 kinase B1; SEM: standard error of the mean; SQSTM1/p62: sequestosome 1; TALEN: transcription activator-like effector nuclease; TUBA: tubulin alpha; ULK1: unc-51 like autophagy activating kinase 1; WB: western blotting; WIPI2: WD repeat domain phosphoinositide interacting 2; WT: wild type.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>31208283</pmid><doi>10.1080/15548627.2019.1632620</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2924-4370</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8627
ispartof Autophagy, 2020-04, Vol.16 (4), p.600-614
issn 1554-8627
1554-8635
language eng
recordid cdi_pubmed_primary_31208283
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Apoptosis Regulatory Proteins - metabolism
ATG8
Autophagosomes - metabolism
Autophagy - physiology
Autophagy-Related Protein-1 Homolog - genetics
Autophagy-Related Protein-1 Homolog - metabolism
Autophagy-Related Proteins - metabolism
Class III Phosphatidylinositol 3-Kinases - metabolism
GABARAP
Humans
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
LC3
LIR
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Research Paper
ULK1
title GABARAPs and LC3s have opposite roles in regulating ULK1 for autophagy induction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GABARAPs%20and%20LC3s%20have%20opposite%20roles%20in%20regulating%20ULK1%20for%20autophagy%20induction&rft.jtitle=Autophagy&rft.au=Grunwald,%20Douglas%20S.&rft.date=2020-04-02&rft.volume=16&rft.issue=4&rft.spage=600&rft.epage=614&rft.pages=600-614&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080/15548627.2019.1632620&rft_dat=%3Cproquest_pubme%3E2242821085%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242821085&rft_id=info:pmid/31208283&rfr_iscdi=true