The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions

Background: Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci. Objectives: This study aimed to evaluate the performance of selec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human heredity 2018-01, Vol.83 (6), p.315-332
Hauptverfasser: Osazuwa-Peters, Oyomoare L., Schwander, Karen, Waken, R.J., de las Fuentes, Lisa, Kilpeläinen, Tuomas O., Loos, Ruth J.F., Racette, Susan B., Sung, Yun Ju, Rao, D.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 6
container_start_page 315
container_title Human heredity
container_volume 83
creator Osazuwa-Peters, Oyomoare L.
Schwander, Karen
Waken, R.J.
de las Fuentes, Lisa
Kilpeläinen, Tuomas O.
Loos, Ruth J.F.
Racette, Susan B.
Sung, Yun Ju
Rao, D.C.
description Background: Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci. Objectives: This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification. Method: For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error. Results: In the empirical analysis, SIEE’s performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power. Conclusion: SIEE’s promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE’s full advantage.
doi_str_mv 10.1159/000499711
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31167214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48508380</jstor_id><sourcerecordid>48508380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-2d9767a4abd713c0e7b48a7d98213cb9974b0ed5499a940afaac66180732727f3</originalsourceid><addsrcrecordid>eNpVkUFv1DAQhS0EokvhwB1QjnAIeJzETi5Iq2oplSpRiXK2nGSy65K1F9tZdf89s90SlZP1_D6_8cww9hb4Z4Cq-cI5L5tGATxjCyhFkXMuxXO2oHvIK1mJM_YqxjuSNVfFS3ZWAEgloFyww-0Gs5vgtzZi5ofsJ47YJevW2ZXr7d72kxljNhCQJSJX9yngFuMRXd3vfJwCZtY9eEtnxkO0D94lOsxvNiQ7M2ZLStzbdKDMhMGQ8i6-Zi8GysY3j-c5-_VtdXvxPb_-cXl1sbzOuxLqlIu-UVKZ0rS9gqLjqNqyNqpvakGypbbLlmNf0QBMU3IzGNNJCcdGhRJqKM7Z11Pubmq32HfoUjCj3gW7NeGgvbH6f8fZjV77vZZSigZqCvj4GBD8nwlj0jSsDsfROPRT1EJUXBYCoCH00wntgo8x4DCXAa6Pq9Lzqoj98PRfM_lvNwS8OwG_TVhjmIH5_fuTfReTf-LWFa-Lmhd_AaTHor4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250632119</pqid></control><display><type>article</type><title>The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions</title><source>Jstor Complete Legacy</source><source>Karger Journals</source><source>MEDLINE</source><creator>Osazuwa-Peters, Oyomoare L. ; Schwander, Karen ; Waken, R.J. ; de las Fuentes, Lisa ; Kilpeläinen, Tuomas O. ; Loos, Ruth J.F. ; Racette, Susan B. ; Sung, Yun Ju ; Rao, D.C.</creator><creatorcontrib>Osazuwa-Peters, Oyomoare L. ; Schwander, Karen ; Waken, R.J. ; de las Fuentes, Lisa ; Kilpeläinen, Tuomas O. ; Loos, Ruth J.F. ; Racette, Susan B. ; Sung, Yun Ju ; Rao, D.C.</creatorcontrib><description>Background: Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci. Objectives: This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification. Method: For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error. Results: In the empirical analysis, SIEE’s performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power. Conclusion: SIEE’s promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE’s full advantage.</description><identifier>ISSN: 0001-5652</identifier><identifier>ISSN: 1423-0062</identifier><identifier>EISSN: 1423-0062</identifier><identifier>DOI: 10.1159/000499711</identifier><identifier>PMID: 31167214</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Bias ; Blood Pressure - physiology ; Computer Simulation ; Data Analysis ; Exercise ; Genetic Loci ; Genome-Wide Association Study ; Humans ; Original Paper ; Systole - physiology</subject><ispartof>Human heredity, 2018-01, Vol.83 (6), p.315-332</ispartof><rights>2019 S. Karger AG</rights><rights>2019 S. Karger AG, Basel</rights><rights>2019 S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-2d9767a4abd713c0e7b48a7d98213cb9974b0ed5499a940afaac66180732727f3</citedby><cites>FETCH-LOGICAL-c418t-2d9767a4abd713c0e7b48a7d98213cb9974b0ed5499a940afaac66180732727f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48508380$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48508380$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2423,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31167214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osazuwa-Peters, Oyomoare L.</creatorcontrib><creatorcontrib>Schwander, Karen</creatorcontrib><creatorcontrib>Waken, R.J.</creatorcontrib><creatorcontrib>de las Fuentes, Lisa</creatorcontrib><creatorcontrib>Kilpeläinen, Tuomas O.</creatorcontrib><creatorcontrib>Loos, Ruth J.F.</creatorcontrib><creatorcontrib>Racette, Susan B.</creatorcontrib><creatorcontrib>Sung, Yun Ju</creatorcontrib><creatorcontrib>Rao, D.C.</creatorcontrib><title>The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions</title><title>Human heredity</title><addtitle>Hum Hered</addtitle><description>Background: Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci. Objectives: This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification. Method: For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error. Results: In the empirical analysis, SIEE’s performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power. Conclusion: SIEE’s promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE’s full advantage.</description><subject>Bias</subject><subject>Blood Pressure - physiology</subject><subject>Computer Simulation</subject><subject>Data Analysis</subject><subject>Exercise</subject><subject>Genetic Loci</subject><subject>Genome-Wide Association Study</subject><subject>Humans</subject><subject>Original Paper</subject><subject>Systole - physiology</subject><issn>0001-5652</issn><issn>1423-0062</issn><issn>1423-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFv1DAQhS0EokvhwB1QjnAIeJzETi5Iq2oplSpRiXK2nGSy65K1F9tZdf89s90SlZP1_D6_8cww9hb4Z4Cq-cI5L5tGATxjCyhFkXMuxXO2oHvIK1mJM_YqxjuSNVfFS3ZWAEgloFyww-0Gs5vgtzZi5ofsJ47YJevW2ZXr7d72kxljNhCQJSJX9yngFuMRXd3vfJwCZtY9eEtnxkO0D94lOsxvNiQ7M2ZLStzbdKDMhMGQ8i6-Zi8GysY3j-c5-_VtdXvxPb_-cXl1sbzOuxLqlIu-UVKZ0rS9gqLjqNqyNqpvakGypbbLlmNf0QBMU3IzGNNJCcdGhRJqKM7Z11Pubmq32HfoUjCj3gW7NeGgvbH6f8fZjV77vZZSigZqCvj4GBD8nwlj0jSsDsfROPRT1EJUXBYCoCH00wntgo8x4DCXAa6Pq9Lzqoj98PRfM_lvNwS8OwG_TVhjmIH5_fuTfReTf-LWFa-Lmhd_AaTHor4</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Osazuwa-Peters, Oyomoare L.</creator><creator>Schwander, Karen</creator><creator>Waken, R.J.</creator><creator>de las Fuentes, Lisa</creator><creator>Kilpeläinen, Tuomas O.</creator><creator>Loos, Ruth J.F.</creator><creator>Racette, Susan B.</creator><creator>Sung, Yun Ju</creator><creator>Rao, D.C.</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180101</creationdate><title>The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions</title><author>Osazuwa-Peters, Oyomoare L. ; Schwander, Karen ; Waken, R.J. ; de las Fuentes, Lisa ; Kilpeläinen, Tuomas O. ; Loos, Ruth J.F. ; Racette, Susan B. ; Sung, Yun Ju ; Rao, D.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-2d9767a4abd713c0e7b48a7d98213cb9974b0ed5499a940afaac66180732727f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bias</topic><topic>Blood Pressure - physiology</topic><topic>Computer Simulation</topic><topic>Data Analysis</topic><topic>Exercise</topic><topic>Genetic Loci</topic><topic>Genome-Wide Association Study</topic><topic>Humans</topic><topic>Original Paper</topic><topic>Systole - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osazuwa-Peters, Oyomoare L.</creatorcontrib><creatorcontrib>Schwander, Karen</creatorcontrib><creatorcontrib>Waken, R.J.</creatorcontrib><creatorcontrib>de las Fuentes, Lisa</creatorcontrib><creatorcontrib>Kilpeläinen, Tuomas O.</creatorcontrib><creatorcontrib>Loos, Ruth J.F.</creatorcontrib><creatorcontrib>Racette, Susan B.</creatorcontrib><creatorcontrib>Sung, Yun Ju</creatorcontrib><creatorcontrib>Rao, D.C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osazuwa-Peters, Oyomoare L.</au><au>Schwander, Karen</au><au>Waken, R.J.</au><au>de las Fuentes, Lisa</au><au>Kilpeläinen, Tuomas O.</au><au>Loos, Ruth J.F.</au><au>Racette, Susan B.</au><au>Sung, Yun Ju</au><au>Rao, D.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions</atitle><jtitle>Human heredity</jtitle><addtitle>Hum Hered</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>83</volume><issue>6</issue><spage>315</spage><epage>332</epage><pages>315-332</pages><issn>0001-5652</issn><issn>1423-0062</issn><eissn>1423-0062</eissn><abstract>Background: Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci. Objectives: This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification. Method: For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error. Results: In the empirical analysis, SIEE’s performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power. Conclusion: SIEE’s promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE’s full advantage.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>31167214</pmid><doi>10.1159/000499711</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-5652
ispartof Human heredity, 2018-01, Vol.83 (6), p.315-332
issn 0001-5652
1423-0062
1423-0062
language eng
recordid cdi_pubmed_primary_31167214
source Jstor Complete Legacy; Karger Journals; MEDLINE
subjects Bias
Blood Pressure - physiology
Computer Simulation
Data Analysis
Exercise
Genetic Loci
Genome-Wide Association Study
Humans
Original Paper
Systole - physiology
title The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Promise%20of%20Selecting%20Individuals%20from%20the%20Extremes%20of%20Exposure%20in%20the%20Analysis%20of%20Gene-Physical%20Activity%20Interactions&rft.jtitle=Human%20heredity&rft.au=Osazuwa-Peters,%20Oyomoare%20L.&rft.date=2018-01-01&rft.volume=83&rft.issue=6&rft.spage=315&rft.epage=332&rft.pages=315-332&rft.issn=0001-5652&rft.eissn=1423-0062&rft_id=info:doi/10.1159/000499711&rft_dat=%3Cjstor_pubme%3E48508380%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250632119&rft_id=info:pmid/31167214&rft_jstor_id=48508380&rfr_iscdi=true