The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions
Background: Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci. Objectives: This study aimed to evaluate the performance of selec...
Gespeichert in:
Veröffentlicht in: | Human heredity 2018-01, Vol.83 (6), p.315-332 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | 6 |
container_start_page | 315 |
container_title | Human heredity |
container_volume | 83 |
creator | Osazuwa-Peters, Oyomoare L. Schwander, Karen Waken, R.J. de las Fuentes, Lisa Kilpeläinen, Tuomas O. Loos, Ruth J.F. Racette, Susan B. Sung, Yun Ju Rao, D.C. |
description | Background: Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci. Objectives: This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification. Method: For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error. Results: In the empirical analysis, SIEE’s performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power. Conclusion: SIEE’s promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE’s full advantage. |
doi_str_mv | 10.1159/000499711 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31167214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48508380</jstor_id><sourcerecordid>48508380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-2d9767a4abd713c0e7b48a7d98213cb9974b0ed5499a940afaac66180732727f3</originalsourceid><addsrcrecordid>eNpVkUFv1DAQhS0EokvhwB1QjnAIeJzETi5Iq2oplSpRiXK2nGSy65K1F9tZdf89s90SlZP1_D6_8cww9hb4Z4Cq-cI5L5tGATxjCyhFkXMuxXO2oHvIK1mJM_YqxjuSNVfFS3ZWAEgloFyww-0Gs5vgtzZi5ofsJ47YJevW2ZXr7d72kxljNhCQJSJX9yngFuMRXd3vfJwCZtY9eEtnxkO0D94lOsxvNiQ7M2ZLStzbdKDMhMGQ8i6-Zi8GysY3j-c5-_VtdXvxPb_-cXl1sbzOuxLqlIu-UVKZ0rS9gqLjqNqyNqpvakGypbbLlmNf0QBMU3IzGNNJCcdGhRJqKM7Z11Pubmq32HfoUjCj3gW7NeGgvbH6f8fZjV77vZZSigZqCvj4GBD8nwlj0jSsDsfROPRT1EJUXBYCoCH00wntgo8x4DCXAa6Pq9Lzqoj98PRfM_lvNwS8OwG_TVhjmIH5_fuTfReTf-LWFa-Lmhd_AaTHor4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250632119</pqid></control><display><type>article</type><title>The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions</title><source>Jstor Complete Legacy</source><source>Karger Journals</source><source>MEDLINE</source><creator>Osazuwa-Peters, Oyomoare L. ; Schwander, Karen ; Waken, R.J. ; de las Fuentes, Lisa ; Kilpeläinen, Tuomas O. ; Loos, Ruth J.F. ; Racette, Susan B. ; Sung, Yun Ju ; Rao, D.C.</creator><creatorcontrib>Osazuwa-Peters, Oyomoare L. ; Schwander, Karen ; Waken, R.J. ; de las Fuentes, Lisa ; Kilpeläinen, Tuomas O. ; Loos, Ruth J.F. ; Racette, Susan B. ; Sung, Yun Ju ; Rao, D.C.</creatorcontrib><description>Background: Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci. Objectives: This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification. Method: For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error. Results: In the empirical analysis, SIEE’s performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power. Conclusion: SIEE’s promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE’s full advantage.</description><identifier>ISSN: 0001-5652</identifier><identifier>ISSN: 1423-0062</identifier><identifier>EISSN: 1423-0062</identifier><identifier>DOI: 10.1159/000499711</identifier><identifier>PMID: 31167214</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Bias ; Blood Pressure - physiology ; Computer Simulation ; Data Analysis ; Exercise ; Genetic Loci ; Genome-Wide Association Study ; Humans ; Original Paper ; Systole - physiology</subject><ispartof>Human heredity, 2018-01, Vol.83 (6), p.315-332</ispartof><rights>2019 S. Karger AG</rights><rights>2019 S. Karger AG, Basel</rights><rights>2019 S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-2d9767a4abd713c0e7b48a7d98213cb9974b0ed5499a940afaac66180732727f3</citedby><cites>FETCH-LOGICAL-c418t-2d9767a4abd713c0e7b48a7d98213cb9974b0ed5499a940afaac66180732727f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48508380$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48508380$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2423,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31167214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osazuwa-Peters, Oyomoare L.</creatorcontrib><creatorcontrib>Schwander, Karen</creatorcontrib><creatorcontrib>Waken, R.J.</creatorcontrib><creatorcontrib>de las Fuentes, Lisa</creatorcontrib><creatorcontrib>Kilpeläinen, Tuomas O.</creatorcontrib><creatorcontrib>Loos, Ruth J.F.</creatorcontrib><creatorcontrib>Racette, Susan B.</creatorcontrib><creatorcontrib>Sung, Yun Ju</creatorcontrib><creatorcontrib>Rao, D.C.</creatorcontrib><title>The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions</title><title>Human heredity</title><addtitle>Hum Hered</addtitle><description>Background: Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci. Objectives: This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification. Method: For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error. Results: In the empirical analysis, SIEE’s performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power. Conclusion: SIEE’s promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE’s full advantage.</description><subject>Bias</subject><subject>Blood Pressure - physiology</subject><subject>Computer Simulation</subject><subject>Data Analysis</subject><subject>Exercise</subject><subject>Genetic Loci</subject><subject>Genome-Wide Association Study</subject><subject>Humans</subject><subject>Original Paper</subject><subject>Systole - physiology</subject><issn>0001-5652</issn><issn>1423-0062</issn><issn>1423-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFv1DAQhS0EokvhwB1QjnAIeJzETi5Iq2oplSpRiXK2nGSy65K1F9tZdf89s90SlZP1_D6_8cww9hb4Z4Cq-cI5L5tGATxjCyhFkXMuxXO2oHvIK1mJM_YqxjuSNVfFS3ZWAEgloFyww-0Gs5vgtzZi5ofsJ47YJevW2ZXr7d72kxljNhCQJSJX9yngFuMRXd3vfJwCZtY9eEtnxkO0D94lOsxvNiQ7M2ZLStzbdKDMhMGQ8i6-Zi8GysY3j-c5-_VtdXvxPb_-cXl1sbzOuxLqlIu-UVKZ0rS9gqLjqNqyNqpvakGypbbLlmNf0QBMU3IzGNNJCcdGhRJqKM7Z11Pubmq32HfoUjCj3gW7NeGgvbH6f8fZjV77vZZSigZqCvj4GBD8nwlj0jSsDsfROPRT1EJUXBYCoCH00wntgo8x4DCXAa6Pq9Lzqoj98PRfM_lvNwS8OwG_TVhjmIH5_fuTfReTf-LWFa-Lmhd_AaTHor4</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Osazuwa-Peters, Oyomoare L.</creator><creator>Schwander, Karen</creator><creator>Waken, R.J.</creator><creator>de las Fuentes, Lisa</creator><creator>Kilpeläinen, Tuomas O.</creator><creator>Loos, Ruth J.F.</creator><creator>Racette, Susan B.</creator><creator>Sung, Yun Ju</creator><creator>Rao, D.C.</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180101</creationdate><title>The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions</title><author>Osazuwa-Peters, Oyomoare L. ; Schwander, Karen ; Waken, R.J. ; de las Fuentes, Lisa ; Kilpeläinen, Tuomas O. ; Loos, Ruth J.F. ; Racette, Susan B. ; Sung, Yun Ju ; Rao, D.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-2d9767a4abd713c0e7b48a7d98213cb9974b0ed5499a940afaac66180732727f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bias</topic><topic>Blood Pressure - physiology</topic><topic>Computer Simulation</topic><topic>Data Analysis</topic><topic>Exercise</topic><topic>Genetic Loci</topic><topic>Genome-Wide Association Study</topic><topic>Humans</topic><topic>Original Paper</topic><topic>Systole - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osazuwa-Peters, Oyomoare L.</creatorcontrib><creatorcontrib>Schwander, Karen</creatorcontrib><creatorcontrib>Waken, R.J.</creatorcontrib><creatorcontrib>de las Fuentes, Lisa</creatorcontrib><creatorcontrib>Kilpeläinen, Tuomas O.</creatorcontrib><creatorcontrib>Loos, Ruth J.F.</creatorcontrib><creatorcontrib>Racette, Susan B.</creatorcontrib><creatorcontrib>Sung, Yun Ju</creatorcontrib><creatorcontrib>Rao, D.C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osazuwa-Peters, Oyomoare L.</au><au>Schwander, Karen</au><au>Waken, R.J.</au><au>de las Fuentes, Lisa</au><au>Kilpeläinen, Tuomas O.</au><au>Loos, Ruth J.F.</au><au>Racette, Susan B.</au><au>Sung, Yun Ju</au><au>Rao, D.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions</atitle><jtitle>Human heredity</jtitle><addtitle>Hum Hered</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>83</volume><issue>6</issue><spage>315</spage><epage>332</epage><pages>315-332</pages><issn>0001-5652</issn><issn>1423-0062</issn><eissn>1423-0062</eissn><abstract>Background: Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci. Objectives: This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification. Method: For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error. Results: In the empirical analysis, SIEE’s performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power. Conclusion: SIEE’s promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE’s full advantage.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>31167214</pmid><doi>10.1159/000499711</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5652 |
ispartof | Human heredity, 2018-01, Vol.83 (6), p.315-332 |
issn | 0001-5652 1423-0062 1423-0062 |
language | eng |
recordid | cdi_pubmed_primary_31167214 |
source | Jstor Complete Legacy; Karger Journals; MEDLINE |
subjects | Bias Blood Pressure - physiology Computer Simulation Data Analysis Exercise Genetic Loci Genome-Wide Association Study Humans Original Paper Systole - physiology |
title | The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Promise%20of%20Selecting%20Individuals%20from%20the%20Extremes%20of%20Exposure%20in%20the%20Analysis%20of%20Gene-Physical%20Activity%20Interactions&rft.jtitle=Human%20heredity&rft.au=Osazuwa-Peters,%20Oyomoare%20L.&rft.date=2018-01-01&rft.volume=83&rft.issue=6&rft.spage=315&rft.epage=332&rft.pages=315-332&rft.issn=0001-5652&rft.eissn=1423-0062&rft_id=info:doi/10.1159/000499711&rft_dat=%3Cjstor_pubme%3E48508380%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250632119&rft_id=info:pmid/31167214&rft_jstor_id=48508380&rfr_iscdi=true |