Electrochemical N 2 fixation by Cu-modified iron oxide dendrites
The electrochemical nitrogen reduction reaction (NRR) under mild conditions is significantly challenging, due to the extremely high stability of dinitrogen (N ) molecules. The NRR pathway also confronts the competitive water reduction reaction that takes places universally in an aqueous solution. He...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2019-05, Vol.552, p.312 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 312 |
container_title | Journal of colloid and interface science |
container_volume | 552 |
creator | Huang, Chengrong Shang, Longmei Han, Peng Gu, Zhengxiang Al-Enizi, Abdullah M Almutairi, Tahani M Cao, Na Zheng, Gengfeng |
description | The electrochemical nitrogen reduction reaction (NRR) under mild conditions is significantly challenging, due to the extremely high stability of dinitrogen (N
) molecules. The NRR pathway also confronts the competitive water reduction reaction that takes places universally in an aqueous solution. Herein, a Fe
O
/Cu catalyst is demonstrated as an efficient NRR electrocatalyst. The electronic interactions elevate the d-state electron center, enabling strong back-bonding for N
molecules. The altering of d-electron distribution promotes the adsorption of N
, leading to a high catalytic activity. As a result, the Fe
O
/Cu catalyst exhibits an outstanding ammonia production rate of 15.66 μg·h
·mg
at -0.1 V versus reversible hydrogen electrode (RHE), a Faradaic efficiency of 24.4%, and a good electrochemical stability. |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_31132633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31132633</sourcerecordid><originalsourceid>FETCH-pubmed_primary_311326333</originalsourceid><addsrcrecordid>eNqFjUsKwjAUAIMgtn6uIO8CgaQhSndCqbhy5b6kzSs-aZqStNDeXhe6djUwDMyKpVLkmp-lUAnbxvgSQkqt8w1LlJQqOymVskvZYTMG3zzRUWM6uEMGLc1mJN9DvUAxcecttYQWKHycn8kiWOxtoBHjnq1b00U8fLljx2v5KG58mGqHthoCOROW6rdUf4M3cQ81yw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrochemical N 2 fixation by Cu-modified iron oxide dendrites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Huang, Chengrong ; Shang, Longmei ; Han, Peng ; Gu, Zhengxiang ; Al-Enizi, Abdullah M ; Almutairi, Tahani M ; Cao, Na ; Zheng, Gengfeng</creator><creatorcontrib>Huang, Chengrong ; Shang, Longmei ; Han, Peng ; Gu, Zhengxiang ; Al-Enizi, Abdullah M ; Almutairi, Tahani M ; Cao, Na ; Zheng, Gengfeng</creatorcontrib><description>The electrochemical nitrogen reduction reaction (NRR) under mild conditions is significantly challenging, due to the extremely high stability of dinitrogen (N
) molecules. The NRR pathway also confronts the competitive water reduction reaction that takes places universally in an aqueous solution. Herein, a Fe
O
/Cu catalyst is demonstrated as an efficient NRR electrocatalyst. The electronic interactions elevate the d-state electron center, enabling strong back-bonding for N
molecules. The altering of d-electron distribution promotes the adsorption of N
, leading to a high catalytic activity. As a result, the Fe
O
/Cu catalyst exhibits an outstanding ammonia production rate of 15.66 μg·h
·mg
at -0.1 V versus reversible hydrogen electrode (RHE), a Faradaic efficiency of 24.4%, and a good electrochemical stability.</description><identifier>EISSN: 1095-7103</identifier><identifier>PMID: 31132633</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of colloid and interface science, 2019-05, Vol.552, p.312</ispartof><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31132633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Chengrong</creatorcontrib><creatorcontrib>Shang, Longmei</creatorcontrib><creatorcontrib>Han, Peng</creatorcontrib><creatorcontrib>Gu, Zhengxiang</creatorcontrib><creatorcontrib>Al-Enizi, Abdullah M</creatorcontrib><creatorcontrib>Almutairi, Tahani M</creatorcontrib><creatorcontrib>Cao, Na</creatorcontrib><creatorcontrib>Zheng, Gengfeng</creatorcontrib><title>Electrochemical N 2 fixation by Cu-modified iron oxide dendrites</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>The electrochemical nitrogen reduction reaction (NRR) under mild conditions is significantly challenging, due to the extremely high stability of dinitrogen (N
) molecules. The NRR pathway also confronts the competitive water reduction reaction that takes places universally in an aqueous solution. Herein, a Fe
O
/Cu catalyst is demonstrated as an efficient NRR electrocatalyst. The electronic interactions elevate the d-state electron center, enabling strong back-bonding for N
molecules. The altering of d-electron distribution promotes the adsorption of N
, leading to a high catalytic activity. As a result, the Fe
O
/Cu catalyst exhibits an outstanding ammonia production rate of 15.66 μg·h
·mg
at -0.1 V versus reversible hydrogen electrode (RHE), a Faradaic efficiency of 24.4%, and a good electrochemical stability.</description><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFjUsKwjAUAIMgtn6uIO8CgaQhSndCqbhy5b6kzSs-aZqStNDeXhe6djUwDMyKpVLkmp-lUAnbxvgSQkqt8w1LlJQqOymVskvZYTMG3zzRUWM6uEMGLc1mJN9DvUAxcecttYQWKHycn8kiWOxtoBHjnq1b00U8fLljx2v5KG58mGqHthoCOROW6rdUf4M3cQ81yw</recordid><startdate>20190516</startdate><enddate>20190516</enddate><creator>Huang, Chengrong</creator><creator>Shang, Longmei</creator><creator>Han, Peng</creator><creator>Gu, Zhengxiang</creator><creator>Al-Enizi, Abdullah M</creator><creator>Almutairi, Tahani M</creator><creator>Cao, Na</creator><creator>Zheng, Gengfeng</creator><scope>NPM</scope></search><sort><creationdate>20190516</creationdate><title>Electrochemical N 2 fixation by Cu-modified iron oxide dendrites</title><author>Huang, Chengrong ; Shang, Longmei ; Han, Peng ; Gu, Zhengxiang ; Al-Enizi, Abdullah M ; Almutairi, Tahani M ; Cao, Na ; Zheng, Gengfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_311326333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chengrong</creatorcontrib><creatorcontrib>Shang, Longmei</creatorcontrib><creatorcontrib>Han, Peng</creatorcontrib><creatorcontrib>Gu, Zhengxiang</creatorcontrib><creatorcontrib>Al-Enizi, Abdullah M</creatorcontrib><creatorcontrib>Almutairi, Tahani M</creatorcontrib><creatorcontrib>Cao, Na</creatorcontrib><creatorcontrib>Zheng, Gengfeng</creatorcontrib><collection>PubMed</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chengrong</au><au>Shang, Longmei</au><au>Han, Peng</au><au>Gu, Zhengxiang</au><au>Al-Enizi, Abdullah M</au><au>Almutairi, Tahani M</au><au>Cao, Na</au><au>Zheng, Gengfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical N 2 fixation by Cu-modified iron oxide dendrites</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2019-05-16</date><risdate>2019</risdate><volume>552</volume><spage>312</spage><pages>312-</pages><eissn>1095-7103</eissn><abstract>The electrochemical nitrogen reduction reaction (NRR) under mild conditions is significantly challenging, due to the extremely high stability of dinitrogen (N
) molecules. The NRR pathway also confronts the competitive water reduction reaction that takes places universally in an aqueous solution. Herein, a Fe
O
/Cu catalyst is demonstrated as an efficient NRR electrocatalyst. The electronic interactions elevate the d-state electron center, enabling strong back-bonding for N
molecules. The altering of d-electron distribution promotes the adsorption of N
, leading to a high catalytic activity. As a result, the Fe
O
/Cu catalyst exhibits an outstanding ammonia production rate of 15.66 μg·h
·mg
at -0.1 V versus reversible hydrogen electrode (RHE), a Faradaic efficiency of 24.4%, and a good electrochemical stability.</abstract><cop>United States</cop><pmid>31132633</pmid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1095-7103 |
ispartof | Journal of colloid and interface science, 2019-05, Vol.552, p.312 |
issn | 1095-7103 |
language | eng |
recordid | cdi_pubmed_primary_31132633 |
source | Access via ScienceDirect (Elsevier) |
title | Electrochemical N 2 fixation by Cu-modified iron oxide dendrites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20N%202%20fixation%20by%20Cu-modified%20iron%20oxide%20dendrites&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Huang,%20Chengrong&rft.date=2019-05-16&rft.volume=552&rft.spage=312&rft.pages=312-&rft.eissn=1095-7103&rft_id=info:doi/&rft_dat=%3Cpubmed%3E31132633%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31132633&rfr_iscdi=true |