Effects of elevated temperature and elevated CO 2 on soil nitrification and ammonia-oxidizing microbial communities in field-grown crop
Rising global air temperature and atmospheric CO are expected to have considerable effects on soil nutrient cycling and plant productivity. Soil nitrification controlled by ammonia-oxidizing bacteria and archaea (AOB and AOA) communities plays a key role in contributing to plant nitrogen (N) availab...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2019-07, Vol.675, p.81 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rising global air temperature and atmospheric CO
are expected to have considerable effects on soil nutrient cycling and plant productivity. Soil nitrification controlled by ammonia-oxidizing bacteria and archaea (AOB and AOA) communities plays a key role in contributing to plant nitrogen (N) availability; however, response of soil nitrification and functional microbial communities to climate change and subsequent consequences for crop yields remain largely unknown. Cotton productivity is a function of temperature and N availability under well-watered conditions. In general, cotton growth responds positively to elevated CO
, but simultaneous warming may offset benefits of rising CO
. In this study, cotton was used as a model system to elucidate the short-term response of soil nitrification and ammonia-oxidizing communities to elevated temperature and elevated CO
using field-based environmentally-controlled chambers. Elevated temperature (ambient + 1.1 °C) altered the AOA community, while elevated temperature and elevated CO
(ambient + 132 ppm) significantly increased soil nitrification rate and shifted AOB and AOA communities, but these effects depended on cotton developmental stages. Ammonia-oxidizing community abundance and structure were statistically correlated with nitrifying activity. Our findings suggest that climate change will positively affect soil nitrifying communities, leading to an increase in process rates and subsequent N availability, which is directly linked to crop productivity. |
---|---|
ISSN: | 1879-1026 |
DOI: | 10.1016/j.scitotenv.2019.04.181 |