Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal
Photoacoustic imaging is an emerging imaging modality that is based upon the photoacoustic effect. In photoacoustic tomography (PAT), the induced acoustic pressure waves are measured by an array of detectors and used to reconstruct an image of the initial pressure distribution. A common challenge fa...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2020-02, Vol.24 (2), p.568-576 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576 |
---|---|
container_issue | 2 |
container_start_page | 568 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 24 |
creator | Guan, Steven Khan, Amir A. Sikdar, Siddhartha Chitnis, Parag V. |
description | Photoacoustic imaging is an emerging imaging modality that is based upon the photoacoustic effect. In photoacoustic tomography (PAT), the induced acoustic pressure waves are measured by an array of detectors and used to reconstruct an image of the initial pressure distribution. A common challenge faced in PAT is that the measured acoustic waves can only be sparsely sampled. Reconstructing sparsely sampled data using standard methods results in severe artifacts that obscure information within the image. We propose a modified convolutional neural network (CNN) architecture termed fully dense UNet (FD-UNet) for removing artifacts from two-dimensional PAT images reconstructed from sparse data and compare the proposed CNN with the standard UNet in terms of reconstructed image quality. |
doi_str_mv | 10.1109/JBHI.2019.2912935 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_31021809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8697107</ieee_id><sourcerecordid>2352193111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3413e504b8f109810d933d3385d5e3894897fc3a64a3b9094f546155ccebf2983</originalsourceid><addsrcrecordid>eNpdkE1PAjEQQBujEYP8AGNiNvHiZbHTbpf2iCCCIWoUzk23dGXJLsV214R_bwkfB-fSyfTNZOYhdAO4C4DF4-vTeNIlGESXCCCCsjN0RSDlMSGYnx9zEEkLdbxf4RA8lER6iVoUMAGOxRWajJqy3EZDs_Ymmr-ZOsqti0g8jL42yoXax9LWVmnb-LrQ0cxW9tupzXIb9V1d5ErX0aep7K8qr9FFrkpvOoe3jeaj59lgHE_fXyaD_jTWNBF1TBOghuEk43m4ggNeCEoXlHK2YIZykXDRyzVVaaJoJrBIcpakwJjWJsuJ4LSNHvZzN87-NMbXsiq8NmWp1iZsKUk4nHAQmAX0_h-6so1bh-0koSy4oQAQKNhT2lnvncnlxhWVclsJWO5Uy51quVMtD6pDz91hcpNVZnHqOIoNwO0eKIwxp2-eih7gHv0DJp1-qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352193111</pqid></control><display><type>article</type><title>Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal</title><source>IEEE Electronic Library (IEL)</source><creator>Guan, Steven ; Khan, Amir A. ; Sikdar, Siddhartha ; Chitnis, Parag V.</creator><creatorcontrib>Guan, Steven ; Khan, Amir A. ; Sikdar, Siddhartha ; Chitnis, Parag V.</creatorcontrib><description>Photoacoustic imaging is an emerging imaging modality that is based upon the photoacoustic effect. In photoacoustic tomography (PAT), the induced acoustic pressure waves are measured by an array of detectors and used to reconstruct an image of the initial pressure distribution. A common challenge faced in PAT is that the measured acoustic waves can only be sparsely sampled. Reconstructing sparsely sampled data using standard methods results in severe artifacts that obscure information within the image. We propose a modified convolutional neural network (CNN) architecture termed fully dense UNet (FD-UNet) for removing artifacts from two-dimensional PAT images reconstructed from sparse data and compare the proposed CNN with the standard UNet in terms of reconstructed image quality.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2019.2912935</identifier><identifier>PMID: 31021809</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustic measurement ; Acoustic measurements ; Acoustic waves ; Acoustics ; Artificial neural networks ; biomedical imaging ; Computer architecture ; Deep Learning ; Detectors ; Elastic waves ; Humans ; Image quality ; Image reconstruction ; image restoration ; Initial pressure ; Iterative methods ; Neural networks ; Photoacoustic effect ; photoacoustic imaging ; Photoacoustic Techniques - methods ; Pressure ; Pressure distribution ; Stress concentration ; Tomography ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE journal of biomedical and health informatics, 2020-02, Vol.24 (2), p.568-576</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3413e504b8f109810d933d3385d5e3894897fc3a64a3b9094f546155ccebf2983</citedby><cites>FETCH-LOGICAL-c349t-3413e504b8f109810d933d3385d5e3894897fc3a64a3b9094f546155ccebf2983</cites><orcidid>0000-0002-6426-2320 ; 0000-0001-5400-3686 ; 0000-0002-8077-5978 ; 0000-0003-0845-5619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8697107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8697107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31021809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Steven</creatorcontrib><creatorcontrib>Khan, Amir A.</creatorcontrib><creatorcontrib>Sikdar, Siddhartha</creatorcontrib><creatorcontrib>Chitnis, Parag V.</creatorcontrib><title>Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Photoacoustic imaging is an emerging imaging modality that is based upon the photoacoustic effect. In photoacoustic tomography (PAT), the induced acoustic pressure waves are measured by an array of detectors and used to reconstruct an image of the initial pressure distribution. A common challenge faced in PAT is that the measured acoustic waves can only be sparsely sampled. Reconstructing sparsely sampled data using standard methods results in severe artifacts that obscure information within the image. We propose a modified convolutional neural network (CNN) architecture termed fully dense UNet (FD-UNet) for removing artifacts from two-dimensional PAT images reconstructed from sparse data and compare the proposed CNN with the standard UNet in terms of reconstructed image quality.</description><subject>Acoustic measurement</subject><subject>Acoustic measurements</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Artificial neural networks</subject><subject>biomedical imaging</subject><subject>Computer architecture</subject><subject>Deep Learning</subject><subject>Detectors</subject><subject>Elastic waves</subject><subject>Humans</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>image restoration</subject><subject>Initial pressure</subject><subject>Iterative methods</subject><subject>Neural networks</subject><subject>Photoacoustic effect</subject><subject>photoacoustic imaging</subject><subject>Photoacoustic Techniques - methods</subject><subject>Pressure</subject><subject>Pressure distribution</subject><subject>Stress concentration</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1PAjEQQBujEYP8AGNiNvHiZbHTbpf2iCCCIWoUzk23dGXJLsV214R_bwkfB-fSyfTNZOYhdAO4C4DF4-vTeNIlGESXCCCCsjN0RSDlMSGYnx9zEEkLdbxf4RA8lER6iVoUMAGOxRWajJqy3EZDs_Ymmr-ZOsqti0g8jL42yoXax9LWVmnb-LrQ0cxW9tupzXIb9V1d5ErX0aep7K8qr9FFrkpvOoe3jeaj59lgHE_fXyaD_jTWNBF1TBOghuEk43m4ggNeCEoXlHK2YIZykXDRyzVVaaJoJrBIcpakwJjWJsuJ4LSNHvZzN87-NMbXsiq8NmWp1iZsKUk4nHAQmAX0_h-6so1bh-0koSy4oQAQKNhT2lnvncnlxhWVclsJWO5Uy51quVMtD6pDz91hcpNVZnHqOIoNwO0eKIwxp2-eih7gHv0DJp1-qw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Guan, Steven</creator><creator>Khan, Amir A.</creator><creator>Sikdar, Siddhartha</creator><creator>Chitnis, Parag V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6426-2320</orcidid><orcidid>https://orcid.org/0000-0001-5400-3686</orcidid><orcidid>https://orcid.org/0000-0002-8077-5978</orcidid><orcidid>https://orcid.org/0000-0003-0845-5619</orcidid></search><sort><creationdate>20200201</creationdate><title>Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal</title><author>Guan, Steven ; Khan, Amir A. ; Sikdar, Siddhartha ; Chitnis, Parag V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3413e504b8f109810d933d3385d5e3894897fc3a64a3b9094f546155ccebf2983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic measurement</topic><topic>Acoustic measurements</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Artificial neural networks</topic><topic>biomedical imaging</topic><topic>Computer architecture</topic><topic>Deep Learning</topic><topic>Detectors</topic><topic>Elastic waves</topic><topic>Humans</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>image restoration</topic><topic>Initial pressure</topic><topic>Iterative methods</topic><topic>Neural networks</topic><topic>Photoacoustic effect</topic><topic>photoacoustic imaging</topic><topic>Photoacoustic Techniques - methods</topic><topic>Pressure</topic><topic>Pressure distribution</topic><topic>Stress concentration</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Steven</creatorcontrib><creatorcontrib>Khan, Amir A.</creatorcontrib><creatorcontrib>Sikdar, Siddhartha</creatorcontrib><creatorcontrib>Chitnis, Parag V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guan, Steven</au><au>Khan, Amir A.</au><au>Sikdar, Siddhartha</au><au>Chitnis, Parag V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>24</volume><issue>2</issue><spage>568</spage><epage>576</epage><pages>568-576</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Photoacoustic imaging is an emerging imaging modality that is based upon the photoacoustic effect. In photoacoustic tomography (PAT), the induced acoustic pressure waves are measured by an array of detectors and used to reconstruct an image of the initial pressure distribution. A common challenge faced in PAT is that the measured acoustic waves can only be sparsely sampled. Reconstructing sparsely sampled data using standard methods results in severe artifacts that obscure information within the image. We propose a modified convolutional neural network (CNN) architecture termed fully dense UNet (FD-UNet) for removing artifacts from two-dimensional PAT images reconstructed from sparse data and compare the proposed CNN with the standard UNet in terms of reconstructed image quality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31021809</pmid><doi>10.1109/JBHI.2019.2912935</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6426-2320</orcidid><orcidid>https://orcid.org/0000-0001-5400-3686</orcidid><orcidid>https://orcid.org/0000-0002-8077-5978</orcidid><orcidid>https://orcid.org/0000-0003-0845-5619</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2020-02, Vol.24 (2), p.568-576 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_31021809 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic measurement Acoustic measurements Acoustic waves Acoustics Artificial neural networks biomedical imaging Computer architecture Deep Learning Detectors Elastic waves Humans Image quality Image reconstruction image restoration Initial pressure Iterative methods Neural networks Photoacoustic effect photoacoustic imaging Photoacoustic Techniques - methods Pressure Pressure distribution Stress concentration Tomography Tomography, X-Ray Computed - methods |
title | Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Dense%20UNet%20for%202-D%20Sparse%20Photoacoustic%20Tomography%20Artifact%20Removal&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Guan,%20Steven&rft.date=2020-02-01&rft.volume=24&rft.issue=2&rft.spage=568&rft.epage=576&rft.pages=568-576&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2019.2912935&rft_dat=%3Cproquest_RIE%3E2352193111%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352193111&rft_id=info:pmid/31021809&rft_ieee_id=8697107&rfr_iscdi=true |