Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal

Photoacoustic imaging is an emerging imaging modality that is based upon the photoacoustic effect. In photoacoustic tomography (PAT), the induced acoustic pressure waves are measured by an array of detectors and used to reconstruct an image of the initial pressure distribution. A common challenge fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2020-02, Vol.24 (2), p.568-576
Hauptverfasser: Guan, Steven, Khan, Amir A., Sikdar, Siddhartha, Chitnis, Parag V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 2
container_start_page 568
container_title IEEE journal of biomedical and health informatics
container_volume 24
creator Guan, Steven
Khan, Amir A.
Sikdar, Siddhartha
Chitnis, Parag V.
description Photoacoustic imaging is an emerging imaging modality that is based upon the photoacoustic effect. In photoacoustic tomography (PAT), the induced acoustic pressure waves are measured by an array of detectors and used to reconstruct an image of the initial pressure distribution. A common challenge faced in PAT is that the measured acoustic waves can only be sparsely sampled. Reconstructing sparsely sampled data using standard methods results in severe artifacts that obscure information within the image. We propose a modified convolutional neural network (CNN) architecture termed fully dense UNet (FD-UNet) for removing artifacts from two-dimensional PAT images reconstructed from sparse data and compare the proposed CNN with the standard UNet in terms of reconstructed image quality.
doi_str_mv 10.1109/JBHI.2019.2912935
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_31021809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8697107</ieee_id><sourcerecordid>2352193111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3413e504b8f109810d933d3385d5e3894897fc3a64a3b9094f546155ccebf2983</originalsourceid><addsrcrecordid>eNpdkE1PAjEQQBujEYP8AGNiNvHiZbHTbpf2iCCCIWoUzk23dGXJLsV214R_bwkfB-fSyfTNZOYhdAO4C4DF4-vTeNIlGESXCCCCsjN0RSDlMSGYnx9zEEkLdbxf4RA8lER6iVoUMAGOxRWajJqy3EZDs_Ymmr-ZOsqti0g8jL42yoXax9LWVmnb-LrQ0cxW9tupzXIb9V1d5ErX0aep7K8qr9FFrkpvOoe3jeaj59lgHE_fXyaD_jTWNBF1TBOghuEk43m4ggNeCEoXlHK2YIZykXDRyzVVaaJoJrBIcpakwJjWJsuJ4LSNHvZzN87-NMbXsiq8NmWp1iZsKUk4nHAQmAX0_h-6so1bh-0koSy4oQAQKNhT2lnvncnlxhWVclsJWO5Uy51quVMtD6pDz91hcpNVZnHqOIoNwO0eKIwxp2-eih7gHv0DJp1-qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352193111</pqid></control><display><type>article</type><title>Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal</title><source>IEEE Electronic Library (IEL)</source><creator>Guan, Steven ; Khan, Amir A. ; Sikdar, Siddhartha ; Chitnis, Parag V.</creator><creatorcontrib>Guan, Steven ; Khan, Amir A. ; Sikdar, Siddhartha ; Chitnis, Parag V.</creatorcontrib><description>Photoacoustic imaging is an emerging imaging modality that is based upon the photoacoustic effect. In photoacoustic tomography (PAT), the induced acoustic pressure waves are measured by an array of detectors and used to reconstruct an image of the initial pressure distribution. A common challenge faced in PAT is that the measured acoustic waves can only be sparsely sampled. Reconstructing sparsely sampled data using standard methods results in severe artifacts that obscure information within the image. We propose a modified convolutional neural network (CNN) architecture termed fully dense UNet (FD-UNet) for removing artifacts from two-dimensional PAT images reconstructed from sparse data and compare the proposed CNN with the standard UNet in terms of reconstructed image quality.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2019.2912935</identifier><identifier>PMID: 31021809</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustic measurement ; Acoustic measurements ; Acoustic waves ; Acoustics ; Artificial neural networks ; biomedical imaging ; Computer architecture ; Deep Learning ; Detectors ; Elastic waves ; Humans ; Image quality ; Image reconstruction ; image restoration ; Initial pressure ; Iterative methods ; Neural networks ; Photoacoustic effect ; photoacoustic imaging ; Photoacoustic Techniques - methods ; Pressure ; Pressure distribution ; Stress concentration ; Tomography ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE journal of biomedical and health informatics, 2020-02, Vol.24 (2), p.568-576</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3413e504b8f109810d933d3385d5e3894897fc3a64a3b9094f546155ccebf2983</citedby><cites>FETCH-LOGICAL-c349t-3413e504b8f109810d933d3385d5e3894897fc3a64a3b9094f546155ccebf2983</cites><orcidid>0000-0002-6426-2320 ; 0000-0001-5400-3686 ; 0000-0002-8077-5978 ; 0000-0003-0845-5619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8697107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8697107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31021809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Steven</creatorcontrib><creatorcontrib>Khan, Amir A.</creatorcontrib><creatorcontrib>Sikdar, Siddhartha</creatorcontrib><creatorcontrib>Chitnis, Parag V.</creatorcontrib><title>Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Photoacoustic imaging is an emerging imaging modality that is based upon the photoacoustic effect. In photoacoustic tomography (PAT), the induced acoustic pressure waves are measured by an array of detectors and used to reconstruct an image of the initial pressure distribution. A common challenge faced in PAT is that the measured acoustic waves can only be sparsely sampled. Reconstructing sparsely sampled data using standard methods results in severe artifacts that obscure information within the image. We propose a modified convolutional neural network (CNN) architecture termed fully dense UNet (FD-UNet) for removing artifacts from two-dimensional PAT images reconstructed from sparse data and compare the proposed CNN with the standard UNet in terms of reconstructed image quality.</description><subject>Acoustic measurement</subject><subject>Acoustic measurements</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Artificial neural networks</subject><subject>biomedical imaging</subject><subject>Computer architecture</subject><subject>Deep Learning</subject><subject>Detectors</subject><subject>Elastic waves</subject><subject>Humans</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>image restoration</subject><subject>Initial pressure</subject><subject>Iterative methods</subject><subject>Neural networks</subject><subject>Photoacoustic effect</subject><subject>photoacoustic imaging</subject><subject>Photoacoustic Techniques - methods</subject><subject>Pressure</subject><subject>Pressure distribution</subject><subject>Stress concentration</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1PAjEQQBujEYP8AGNiNvHiZbHTbpf2iCCCIWoUzk23dGXJLsV214R_bwkfB-fSyfTNZOYhdAO4C4DF4-vTeNIlGESXCCCCsjN0RSDlMSGYnx9zEEkLdbxf4RA8lER6iVoUMAGOxRWajJqy3EZDs_Ymmr-ZOsqti0g8jL42yoXax9LWVmnb-LrQ0cxW9tupzXIb9V1d5ErX0aep7K8qr9FFrkpvOoe3jeaj59lgHE_fXyaD_jTWNBF1TBOghuEk43m4ggNeCEoXlHK2YIZykXDRyzVVaaJoJrBIcpakwJjWJsuJ4LSNHvZzN87-NMbXsiq8NmWp1iZsKUk4nHAQmAX0_h-6so1bh-0koSy4oQAQKNhT2lnvncnlxhWVclsJWO5Uy51quVMtD6pDz91hcpNVZnHqOIoNwO0eKIwxp2-eih7gHv0DJp1-qw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Guan, Steven</creator><creator>Khan, Amir A.</creator><creator>Sikdar, Siddhartha</creator><creator>Chitnis, Parag V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6426-2320</orcidid><orcidid>https://orcid.org/0000-0001-5400-3686</orcidid><orcidid>https://orcid.org/0000-0002-8077-5978</orcidid><orcidid>https://orcid.org/0000-0003-0845-5619</orcidid></search><sort><creationdate>20200201</creationdate><title>Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal</title><author>Guan, Steven ; Khan, Amir A. ; Sikdar, Siddhartha ; Chitnis, Parag V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3413e504b8f109810d933d3385d5e3894897fc3a64a3b9094f546155ccebf2983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic measurement</topic><topic>Acoustic measurements</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Artificial neural networks</topic><topic>biomedical imaging</topic><topic>Computer architecture</topic><topic>Deep Learning</topic><topic>Detectors</topic><topic>Elastic waves</topic><topic>Humans</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>image restoration</topic><topic>Initial pressure</topic><topic>Iterative methods</topic><topic>Neural networks</topic><topic>Photoacoustic effect</topic><topic>photoacoustic imaging</topic><topic>Photoacoustic Techniques - methods</topic><topic>Pressure</topic><topic>Pressure distribution</topic><topic>Stress concentration</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Steven</creatorcontrib><creatorcontrib>Khan, Amir A.</creatorcontrib><creatorcontrib>Sikdar, Siddhartha</creatorcontrib><creatorcontrib>Chitnis, Parag V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guan, Steven</au><au>Khan, Amir A.</au><au>Sikdar, Siddhartha</au><au>Chitnis, Parag V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>24</volume><issue>2</issue><spage>568</spage><epage>576</epage><pages>568-576</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Photoacoustic imaging is an emerging imaging modality that is based upon the photoacoustic effect. In photoacoustic tomography (PAT), the induced acoustic pressure waves are measured by an array of detectors and used to reconstruct an image of the initial pressure distribution. A common challenge faced in PAT is that the measured acoustic waves can only be sparsely sampled. Reconstructing sparsely sampled data using standard methods results in severe artifacts that obscure information within the image. We propose a modified convolutional neural network (CNN) architecture termed fully dense UNet (FD-UNet) for removing artifacts from two-dimensional PAT images reconstructed from sparse data and compare the proposed CNN with the standard UNet in terms of reconstructed image quality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31021809</pmid><doi>10.1109/JBHI.2019.2912935</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6426-2320</orcidid><orcidid>https://orcid.org/0000-0001-5400-3686</orcidid><orcidid>https://orcid.org/0000-0002-8077-5978</orcidid><orcidid>https://orcid.org/0000-0003-0845-5619</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2020-02, Vol.24 (2), p.568-576
issn 2168-2194
2168-2208
language eng
recordid cdi_pubmed_primary_31021809
source IEEE Electronic Library (IEL)
subjects Acoustic measurement
Acoustic measurements
Acoustic waves
Acoustics
Artificial neural networks
biomedical imaging
Computer architecture
Deep Learning
Detectors
Elastic waves
Humans
Image quality
Image reconstruction
image restoration
Initial pressure
Iterative methods
Neural networks
Photoacoustic effect
photoacoustic imaging
Photoacoustic Techniques - methods
Pressure
Pressure distribution
Stress concentration
Tomography
Tomography, X-Ray Computed - methods
title Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Dense%20UNet%20for%202-D%20Sparse%20Photoacoustic%20Tomography%20Artifact%20Removal&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Guan,%20Steven&rft.date=2020-02-01&rft.volume=24&rft.issue=2&rft.spage=568&rft.epage=576&rft.pages=568-576&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2019.2912935&rft_dat=%3Cproquest_RIE%3E2352193111%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352193111&rft_id=info:pmid/31021809&rft_ieee_id=8697107&rfr_iscdi=true